FROM OBJECT-ORIENTED TO COMPONENTS:
Generating Component-Based Software from UML Diagrams

.- Submitted by::

Hind Al-Hakami
. Supervisors::

Professor Ghazy Assassand Dr. Amir Touir

KING SAUD UNIVERSITY
COLLEGE OF COMPUTER AND INFORMATION SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

IN THE NAME OF ALLAH
THE COMPASSIONATE
THE M ERCIFUL

ACKNOWLEDMENTS

To start with, | want to thank the Almight&llah for his blessings and benevolence. They
ensured the completion of this task in a satisiey manner. | was able to overcome the arduous
challenges of writing a research paper onlgamse of the wonderfully warm and supportive
environment at home. My parents made sure lthieds able to focus on this paper without the
usual worries of life. To thenh,owe everything. | was very fortuteato also have the strong and
unwavering support of my teachers. First anceroost, | owe a huge debt of gratitude to
Professor Hassan Mathkour. He helped me conakptuthe project and encouraged me to keep
going through all the rough patchalong the journey. My superuis, Professor Ghazy Assassa
and Dr. Amir Touir, went beyond the call of dutyrot only guide me at every stage of this
project but also motivated me to strive forcebkence. Under the guidance of these three great
teachers, | learnt more thany book could have taught me.

TABLE OF CONTENTS

ACKNOWLEDMENTS ...ttt ettt ettt e e et e e e e eeeeeeeeeees Il
TABLE OF CONTENT S ... 1]
LIST OF TABLES ...ttt ettt ettt e et et e eeeneeeeeeeees Vv
LIST OF FIGURESco o ittt ettt ettt ettt e et e e e e e e e e e e eeeeeeeeeeeees VI
LIST OF FIGURES......ccoiiiiiiiiiiiieieeeeee ettt e e e eeees VI
AB ST RA CT 1
INTRODUGCTION. ...ttt ettt ettt e et e e e eeeeeseeeeees 2
[(0 T T=ox S o - 1 SRR 4
PrOJECT ODJECHIVES. .. ittt e e e e e e e e e e e e e e e et e ab e s 4
1YY T T (o] [o | 2R 4
(@ Y= V1 U PTPTUPPPTRRT 5
1 REVIEW OF RELEVANT AND RELATED LITERATUREccovvvvviiiiiiiiiiieeeeeeeee 6
1.1 Legacy SyStem RENOVALION.........ccoiiiiiiiiiiiiiiae e e e e ettt e e e e e e e e e eeeeeeeennes 6
Motivation: The Business Case for RENOVALION............cccoorrrrrrneeeeeee e, 6
1.1.1Renovate From SOUIrCe COOE.........cooiiiiiicei e 6
1.1.2 Renovate From DeSIQN..........ccooiiiiiiieiiieeeeeees et 8
1.2 Unified Modeling Language (UML)coooiiiiiiiiiiiie e 9
WY USE UMLoooiiiiiiiieee ettt mm 10......
UML DIAQIAMS ..ottt ettt e e ea e e s s sese e s seem 10.......
SEHUCTUAl AIAQIAIMS.........ooiiiiiiicee ettt senis 10
ClasS QIAGIAIM......c.oiiicee ettt e et mmnm 10....
COoMPONENT AIAGIAMY.........coiiiiiiciiieeeeetee ettt b et s b 10
Xml Meta-model Interchange (XMI) ... 10
I B I 11 T | T Y/ =Y g o= 11
COUPIING ..ottt ettt ettt ettt et s mmmmnmnmnmnn 11
CONESION......cooiicc ettt sttt ettt s mmmemnmnmnn 11
COMPIEXILY......evieeieete ettt ettt ettt se et s e e mmmmnmnmand 12
1.4 REVEISE ENQINEEIING...cctiiiiiiiieeieiii ettt ettt e e e e e e e e e e e e e e e e s s b b eeeeeees 12
1.5 Clustering TECHNIGUE........uuuiiii e e e e e s e e e e e e e eaaeeees 13
Partitional CIUSTEIINGc.oiiiiieee e 13
Hierarchical CIUSTEIINGcoiiieeeee et 13
1.6 FOrward ENQINEEIING.......cccciiiiiiiiiiiie ettt r e e e e e e e e e e e e e e e e 14
1.7 System REENQINEEIING.......ccceiiiiiiieeee et e e e e e e e e e e e et e e s e e e e e eeeaaeeeeaanennnns 14

2 TOOL S it 15
SDIMEIIICS ...ttt ettt mnmnnnmnn 15
Java Universal Network / Graph (JUNG).......cccooiiiiiiicceeeeee s 15
N 0 0 10 ST 15
SEYIUS STUTIO......cooice et e 16..
SOUICETOITR ..ottt ettt b s s mmmmmnmnnd 16
R |V | I (@1 @ L € 17
Project Phas@s.......cccooiiiiiiiiii 18
3.1 REVErSE ENQINEEIING.....cciiiiiiiiiiiiiiieeae e e e e e e e e ettt e e e e e e e e e e e e e eeeeeeesssennn s 18
3.2 Read and ANnalyze XMI fil@.......ooeeeiiiiiiiiie e e e e 18
Weights CalCUIALIONS...........c.oooiiieee e 18
3.3 Create Weighted Directed Graph.............ouuuuiiiiiiiiiiieecceeeeeeeeeeer e e e 23
3.4 CIUSLEI the Graph.. ... e et e e e e e e e e e e eeeeeeeees 23
3.5 Generate GraphML file........cooorriiiie e e e e 24
3.6 Transfer GraphML t0 XMI fil€......ccooiiiiiiiii s 27
3.7 FOrward ENQINEEIING.......cceiiiiiieeeeeeeiitiie s s e e e e e e e e e e e e e e eeeaaaeaaas s e e e eaaaaeeaaeeeeeeenrssnnnnns 29
4 SYSTEM DESIGN. ... 30
4.1 Class Diagram LeVEl # O:......uuueeiiii i e e e e 30
4.2 INPUY/OULPUL PACKAGE.ceeeeiiiiitiiiiie ettt e e e e as 31
4.3 XMI2GraphML PaCKAQEe........uuuuuuiiiiiiieieeeeie ettt s e e e e e e e e e e e e eeeeeaeaannnnnnn e as 32
A4 CLUSTER PACKAGE. ... ittt iiieieeiiiiiieeeit e e ettt s s e e e e e e e e e e eeeeeesseannnes 36
4.5 Graphical User Interface Package............oovvvvvuiiiiiiiiiie e 38
4.6 Overall Class DIAgralll..........uuuuuuuiiiieeeeeeeeeeeee ettt e e e e e e e e e e e eeeesrerna s 42
I OF ST Y U 15 43
6 CONCLUSION AND FUTURE WORKuttiiiiiiiiiiiiiiiieiiiiieiirseeniiseenennneennnneeneeea. 57
REFERENGCES.co oottt ettt ettt ettt e e e et e e e e eeeeeeeeeeeeeeees 58

LIST OF TABLES

Table 1: Dependency Weigh Value EQUALIONS...........coooiiiiiiiiiiiiiiiiiie e 22

Table 2: Analytic of DeSIgN EIEMENLS.........ccooiiiiiieeeeers e e e e e e e e eees 43
Table 3: AnalytiC Of REIALIONS.........coooiiiiiee e 44
Table 4: Analytic Of REIALIONS...........uuii i e e 55

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

LIST OF FIGURES

PrOJECT PRASES......uiiiiiiiiiiiie ittt e e e e e e e e e 17
Directed Weighted GraphyL..........oooiiiiiiiiiiiiiiis e e e e e e e e e e e e eaanaeees 23
Clustered Graphl....... ..o e e 24
GrapNML SCREMA.......oiiiiiii et e e e e e e e ees 26
XSLT - GraphML2XMIEXSL...cooiiiii s 29
Class Diagram LeVel #.0.....ccooi i e e e e e e e e e aaees 30
INPUL / QULPUL PACKAGE.coeieeeeeeeeiie s e e e e e e e e e e e e e neenaaaa 31
XMI 2 GraphML PacCKage........uuuuuuiiiiieiee et 32

Figure 9: XMI 2 GraphML Package Dependencies Level.#.0..........cccccuvviiiiiiiiiiiiiiiiieieeeeen, 33
Figure 10: XMI 2 GraphML Package Dependencies Level.#.1............ccccvvvvvvveeiviiiiinnieenennn. 34
T O LI R O [V] (= gl = 11 = T [O 36
Figure 12: Cluster Package Dependencies Level#Z.O..........ouuuuiiiiiiiiiiiiieeeeieeeeeei 36
Figure 13: Cluster Package Dependencies LeVel# L. ... 37
Figure 14: Graphical User Interface Package...............uvuiiiiiiiiii e 38
Figure 15: GUI Package Dependencies LeVelL#.0.........cceiiiiiiiiiiiiiiieeeiiie e 39
Figure 16: GUI Package Dependencies LeVel#. L........cccccoiiiiiiiiiiiiiiiieeeiie e 40
Figure 17: Overall Class DIagrall.........cooiiiiiiiiiiiiiiiiiiie e eeeeeeee b e e e e e e e e e e eeeeeeeennes 42
Figure 18: Window#1 -Graph Representation............coooviiiiiiiiiiiiiiiiiiiie e 43
Figure 19: Forum Case Study GraphML File.........oovuiiiiiiiiiiii e 55
Figure 20: Window#2 — Components ManaQeL...........iiieeeeeeeeieeeeeeeeeeiiiiiiesee s e e e eeeeeaseeeesannnnns 56

Vi

ABSTRACT

Demand for component-based software devebgnms increasing expongally due to highly
dynamic environments confronting software systensdiay’s world. This is result of factors
such as frequent changes business (user) requiremengd challenging development
schedules. Many of these challenges are indeedtlgirelated to rapid changes in software and
hardware technologies. To deal with this envirent this project deveps a tool to generate
component-based software from object-oriented deHiggexpected that this tool will facilitate
the transformation of object-@mted legacy system to compatdased system by using their

design parameters or build a new component-based system.

Introduction

Change is the only constant in the contemporamdv@Vhile this is true for most aspects of our

lives today, it is particularly so for software development. This field is responding to forces of
change from many directions: software develeptriife cycle is getting exponentially shorter,
software application domains are expanding rapidly, pressures on the software development
costs are higher than ever before, and there e/anrincreasing need fartegration of different
domains. In addition, there are additional pressuo change resulting from new technological

advances in both software and hardware.

The famous scientist Charles Darwin once wrote, “It is not the strongest of the species that
survive nor the most intelligent, but the ones vah® most responsive to change.” His words are

as relevant to the software coampes as they are to any otlsgrecie. Thus, the future success

and survival of software companies will dependically on their ability to manage complexity

and rapidly adapt to change. Mospecifically, the ability tweuse system components already
developed will be a key success factor tavme and respond to the rapidly changing
requirements of the market. This implies that ttevelopment process must change its focus
from programming-intensive activities to greawmphasis on reuse, igm@tion, standards,
management of complex and flexible structufesling proper solutionstradeoff analysis and

marketing survey.

Component recovery and re-modulatinan were strategies usedgdset a firm grip on large and
complex legacy systems suffering fraad-hoc changes. This was done by recovering logical
components and restructuring the physical components accordingly to decrease coupling among
components and thereby increéise cohesion within components. The idea that software should

be componentized, built from prefabricat@snponents, is not a new one. It was first published

in Douglas Mcllroy's address #te NATO conference on softwaengineering in Garmisch,
Germany, 1968 titled Mass Produced Software Components.” This conference set out to
counter the so-called softwarasts. With the increasm the speed of change, the relevance and

popular acceptance of thdea has also grown.

It is now estimated that the largest portion of traditional software development cost goes to
maintenance process. According to some estimabemst 80 percent of the applications budget

is typically allocated to software maintenanas,many legacy systems tend to be very hard to
adapt and, over time, suffer from lack obper documentation. In addition, those systems find it
harder to keep pace with changes requiredthgy evolving businesseeds and advances in
technology. Beside all ih the growing need for intra-ongi@aation collaboration and knowledge

sharing makes it imperative for the comgsnto modernize for their survival.

There are many options for transforming legacstays into component based systems: it can be
done semi-automatically or automatically. Inisttpaper we deal with a subset of these

approaches.

Software systems from the past (“legacy” systedid not anticipate the pace of change in the
modern world. Thus they suffer from several drawbacks:

e They tend to be very hard to adapt.

e It is hard to train people on legacy systems as often there is absence of relevant
knowledge regarding these old systems and new users are not familiar with the old
methodologies and concepts. This makes it hard to maintain them.

e These systems cannot keep up with thedraalaptation demanded by realities of fast-

paced modern businesses and technology.

The rapid growth of horizontallgnd vertically integated supply chains geires integration of
systems both inside and between organizations.speed of technology changes, coupled with
the growing requirement for intra-organizatiorftaare collaboration, mas modernization of
software a must for survival. Transformationables migration to new platforms, and often
includes translation to new programming languageslution is necessary to cope with endless
new software releases and manage hardveaug software obsolescence. To succeed, the
methodology used for managing evolution mustude component-based software engineering
(CBSE).

It can not be denied that legacy software systprovide valuable functi@iities that have been

proven in practice. These legacy systems aétmabody valuable intellectlassets, representing

successful business practices and proceduresinttie interest of the enterprise to reuse and
reconvert these intellectualssets and not discard them. Th& where retrieving useful
components from the legacy systems can proveetonuch more effective than building them

from scratch.

Project Goal

Generate component-based software from olggented design using UML class diagrams.

Project Objectives

a. Develop a system recovery tool that conseah object-oriented structural design into
component-based software.

b. Testit on java programming language.
Ensure that it can be used for any programming language.

d. Find an optimum method to define relationportance weights to give satisfactory
results.

e. Suggest future modifications to improve the system recovery tool.

Methodology

This system takes UML class diagrams via XM fis inputs. Analysis class diagrams and set
weight for each edge according to type of ietait represent. Take it weighted graph and
cluster it into highly connected clusters then geteettze XMl file so that each cluster represents

a component. Generate fully deployable componesitsy one of the Foravd Engineering tools.

With continued acceleration in the speed ofng® it will be important to preserve what is
valuable and develop new progmnfor the evolving business eds. In this context, the

component-based approach is likely to acqeuen greater relevance in the future.

Overview

The remainder of this paper is divided into Stiees. In sections 1, wstart by a review of the
relevant and related literature. Section 2 pravidedescription of various tools and techniques
utilized in this project. Section3 briefly describe the projegian and phases and describe in
some details procedures and methodology. A case s&ualyerviewed inaction 4. And finally,

conclusion and future work are stated in section 5.

1 Review of Relevant ad Related Literature

1.1 Legacy System Renovation

Motivation: The Business Case for Renovation

As mentioned earlier in the introductory senti in today’s business environment, there is a
constant need for updating and renovating busioessal software systems for a variety of
reasons. Some of these reasons are: busieegsrements change rapidly and frequently,
technological infrastructure is modernizedeaponential speeds, clges in government laws.
For these reasons, the fields of reversgireering and system renovation are becoming
increasing important. The interest in such eat§ originates from the difficulties that
organizations encounter when attempting rt@intain extremely large software systems
developed in the past. Such software systerasofien referred to as “legacy systems,” since
they are a legacy of many different people thate developed and maimtad them. It is not

very difficult to see that is very challenging—if not impossible—to maintain them.

Before the actual renovation catart it is necessary to make inventory of the specification
and the documentation of the system to be rendvatiso at this point there is a challenge for
software engineers since the algstems lack mostly these sources of information. Experience
shows that either there is no documentatioralft or the original programmers that could
possibly explain the functionality of parts of the system have left, or both. The only
documentation that is left is the source codelfitsThus, since the vital information of the
software is solely accessible via the source coddlibe necessary to develop tools to facilitate

the renovation--a task for software engineers.
System Re-factoring Techniques

1.1.1 Renovate From Source Code

Most of methodologies in this cagery include the following typicaet of steps: (i) restructuring
the legacy code, (ii) extractimreusable business models esponding to candidate components,

and (iii) wrapping themnto deployable compants. And since most of legacy systems were
written in COBOL there was a lot of researcldealing with reenginegrg COBOL codes as in
[28] .Errickson-Connor irf11] provides an excellent guiderfsource code renovation processes
through a four stage process dastiag of cleaning, restructung, transformation, and managing.
In [8] they analyze the legacy code before restmig rather than cleaning. This approach of
analyzing the legacy coddoroughly before cleang it appears to be a m@efficient. In fact,
the cleaning is part of analyzing processes andevan be automated. As stated by them, there
are several starting points to analyze legaggtems. They include: interviewing users,
maintainers and, if possible, the designersthed legacy system. In addition, we can use
persistent data stores as atstgrpoint and track dowthe procedures or classes that can be a
candidate of components. Similarly, as dondg28], we can use legacy system features of the
systems along with the regression testing techsiqaedefine fine-grained components. This
technique allows each component to accomplishfeatire while not all features have to be
wrapped into a component. Another starting point for the analysis of the legacy systems can be
the system structure or the use cases as descrif8{l inhey used PERFORM graph and the
dominance relation of the calling structure betwpencedures to gendgeadominance tree to
identify reusable components. As we will seelathese tools are more commonly used in the
second category of methodologigkich renovate from design.
Following are examples of some system analysis and component mining methods:
1.1.1.1 Design Patterns
This approach seeks to identify instances of Design Patterns based on the idea that they
can be characterized as a group of claskasing mutual relains. “Object-Oriented
Reengineering Patterns” Book by Demeyeraktdescribes a number of recurring
solutions that experts apply while rggneering and mainit@ng object-oriented
systems. The principles and techniques uesd in this book have been observed and
validated in a number of industrial projecasd reflect best practice in object-oriented
reengineering.
Reverse engineering patterns help to extraodels from existig applications and
source code, and reengineeringtgans help to identify and resolve problems in legacy

code.

1.1.1.2 System Features Approach:
Using regression testing documentation whishan important resource tell what
features the system accomplish and by usingexisting code-profiling tool to trace
the code implementing a certain featuf23] found three cases were the feature
implementation needs refinement. First case is when a feature implementation spread
among several functions, Second case is a@ifumanplements several features, the last
case is a combination of both preceding cagedching one of these cases the refactor

the code then create a fine-grained components.

1.1.2 Renovate From Design:

Renovating from design has an advantage thailatform independent, caeadily verify dead

codes.

a) Clustering Approaches

1. Divisive Clustering (Top-Down Approach)

Graph clustering analysi®] [21]processes goes as follow, firststdact the legacy system into

undirected graph, calculate the edggength which is the core stepen cut all the edge smaller

than some threshold, and at lesaty the value of the threshold test the best gained candidates.

Edge strength was calculated us8igycle and 4-cycle edge density.

2. Agglomerative Clustering (Bottom-Up Approach)

In Graph iterative analysiR1] you have to predefine the siné out-coming graph, the size of
sub-graphs to experiment,né the independency thresholthen iteratively apply the
independence metrics to identify the most indelemce sub-graphs until the number of clusters

meets the predetermined size of graph.
The independency metric is calculated udimg equation [IM = cohesion/ (coupling*subgraph
size)]. Where cohesion is the sum of weightsaogr relations, within the subgraph, coupling is

sum of outer relations andetlsize is determined by the nben of sub-graph’s vertices.

Component Identification Methaalith coupling and cohesiofi9]:

Highly demands on well formed architecture tisadivided into well defined subsystems.

In their methodology to identify coponents, they first identify éhcore classes and then use
agglomerative clustering for each core class gringpsubsidiary class tha¢late to the core
class by a relation with a weight beyond the thraskalue, the relation vight is calculated as

the multiplicity of cohesion* interaction coupling* static coupling.

While in [15] Obtain from object oriented analysis paahe structural view from UML class
diagrams. And all of use case diagrams and sexudiagrams to represent the dynamic view.
Calculate the relation strength which is equal to the relative importance of static weight * static
weight + relative importance of Static weighDynamic weight, where the summation of the
both importance weight must equals exactly dreen binary merges cltes is iteratively done

until reach a cut-off depending on a predefitle@shold to identifithe components candidates
also a further refinement are done to mans#tahigh cohesion within a component and low
coupling between components some examplesedetimefinement is retain inherited class and
it's parents in the same component to keepdowpling. The user also can add, move, exchange

or delete some of the component classes.

Two stages approach provided[ikB] to generate the components from the Legacy source code
first stage is to create basicngponents and then refine comporserirst stage is accomplish in
four steps, group classes related to each dihexr composition relationship into a component,
followed by cleaning the unusedasses, After that create component that groups the
hierarchical related classes iktparent class is abstract addoay of it to the component in the
other hand if parent class was concrete move the component at last clean unused classes
again. Second stage use agglomerative cluststarting with basic components and considering
other classes as components then gradggitbyp these components into a bigger component
based on coupling and cohesion metrics andgushe component complexity threshold to
manage the granularity of the created components.

1.2 Unified Modeling Language (UML)

“Unified Modeling language ifn industry standard languader specifying, visualization,
constructing, and documentingethrtifacts of software systems standardized by the”.

One way to use UML is as blueprint which is katigely detailed design diagram used in reverse

and forward engineering.

Why Use UML

UML is mainly used due to three main reasons:
1. UML is independent from programmimgnguages and development process.
2. Supports component methodology.
3. Provides an XML based interamge language which is XMI.

UML Diagrams

Currently many of UML tools suppodil thirteen diagrams provideby UML, andare classified
into three categories; first category includes stixictural diagrams known as static diagrams;
second category includes three behavioralrdiag known as dynamic diagrams, and the third

category includes four interaction diagrams.

In this project we will consider only class diagimand component diagrams from the structural

view.
Structural diagrams

Class diagram

UML class diagram is a “Pictorial representation of a detailed system d¢3&jn¢onsisting of
classes, interfaces, and relations among them. It represestati @view” of the system.

Relations are of different typgassociations, aggregationngealization and dependencies.

Component diagram

UML Component diagram shows system congas and the dependencies between them.

Xml Meta-model Interchange (XMI)

XMl is an OMG standard for exchanging metadata information via XML. The most common use
of XMl is as an Interchanging fmat for UML models. It is supptad by almost all UML tools,
the most popular versions are 1.0, 1.2, 2.0, and 2idwvas released. Since versions less than

10

2.0 don’t support visualization of diagrams abelcause we are using version 1.2 we can’t
represent the generated component diagramud§eversion 1.2 and nohawer version because

currently most of the forwardhgineering tools support version 1.2.

1.3 Design Metrics

Design Metrics provide measurement of several aspects of quality of design properties. With
component development, metrics help usneasure the cohesive within a component’s

constituents, coupling between componeats] the granularity of components.

Coupling
Since the coupling is a measwfehow strongly a component é®nnected to, has knowledge of,
or relies on other components, the aim is to ma&inthe coupling as low as possible, but because
the “components are for compositiofi3d8] we can not eliminate coupling between classes.
Despite this fact, high coupling to stable or preative elements is acdaple. Benefits of Low
Coupling are:

a. Increase reusability.

b. Increase maintainability.

c. Increase understandability.

Cohesion

A measure of how stronglrelated and focused the resporigibs of component’s constituent

are[25] i.e. component should implement a senfiinction or a highly related functions.

Very Low Cohesion

Component constituents are responsible for nitaimgs in many different functional areas.

Low Cohesion

Component is very complex and hard to maragan thought it serves one functional area.

11

High Cohesion
Component has moderate complexity, sereg® functional area, but depends on other

components.

Moderate Cohesion
Component has sole responsibilities in a few diffié areas that are lagilly highly related to

each other. Going down the Iéw# cohesion is enhanced.

Complexity

Class diagram complexity measures the degreemfectivity between eents of a design unit
and can be measured by measuring the complekibpoth classes andlations composing the
diagram.

Class Complexity

Many factors should be considered while noeimg class complexity such as class size,
Inheritance, the number of pid operators and attributel 6], and the number of method

invocations among the methods within the classes.

Relations complexity
Not only different kinds of relationisave different degrseof complexity even different types of

each kind have differentegrees of complexity.

1.4 Reverse Engineering

Reverse engineering has it origins in hardweachnology and denotes the process of obtaining
the specification of complex hardware systemnd in Software has been defined as “The

process of analyzing software with the objeetf recovering its design and specificati¢87].

Often, over time, the design documentations are stn if exist, theyare not updated during
the process of updating or maintenance of thgiral software system. Hence, they do not
reveal the actual current design. Reverse engimgé&siused to recapture the high level design of

the system. In our approach we used reversaneadng to obtain the system structure via UML

12

class diagrams of the current updated system that will be renovated. Reverse engineering restricts
itself toinvestigating a system without any adaptations or modifications.

1.5 Clustering Technique

Clustering is the process of grouping some reldsgd according to similarity of measurements.
In our context similarity is represented ttne level of dependency between classes.

Partitional Clustering

Considers dataset as a whole cluster and diiitte non-overlapping dkters. In partitional
clustering a number of clusters b produced or size of clusters must be predefined. And
usually the cluster’s elements are chosen arbytradne of the famous partitional clustering is

K-means clustering.

Hierarchical Clustering

Hierarchical Clusteringrovides a set of nested clustdrat are organized as a tree.

Agglomerative Clustering (Bottom-Up)

Starts with each element as aster and iteratively da successful merges into a larger clusters.
Min-Max cut: The Min-Max cut main principle is thassociation betweetwo sub-graphs is

minimized, while association within each sub-graph is maximjizéfl

Divisive Clustering (Top-Down)

Treats all dataset as a whole cluster andateygly break them into smaller clusters.
Average Similarity: The average similarity within a cligs must be maximized and minimized

between clusters.

13

1.6 Forward Engineering

As defined in[37] “Forward Engineering is the set ofiggheering activities that consume the
products and artifacts derived from legacytware and new requirements to produce a new
target system”.

Generating code in forwdrengineering process can be damseveral wayspne way is model
driven Architecture (MDA) based forward enginegrwhich uses templates mostly written in

Velocity scripting language to generate tioele. Other way is to use design patterns.

1.7 System Reengineering

System Reengineering is the examination alidration of an existig subject system to
reconstitute in a new form. This process encassps a combination of sub-processes such as

reverse engineering, restruchyg, re-documentation, forwarchgineering, and retargeting.

14

2 Tools

To accomplish this work we utilized some tools.

SDMetrics
SDMetrics is a stand alone tool that meastnesstructural properteeof UML designs using
object-oriented measurement of size, complexitypling, and cohesion. ftrovide a statistical

analysis of the design that can exported as an excel spreadsheet.

Java Universal Network / Graph (JUNG)

JUNG framework is a free open source library wmitia java to manipulate, visualize, and
analyze graphs and networks dafhis library has many useftéatures; it supports many kinds
of graphs including directed graph which is reskan this project, it provide a mechanism to
attach metadata for the graph, nodes, and relatisriabels and weights. Moreover, it supports
some of the graph methodologies including fitg, decomposition, statistical analysis, and
clustering such as Edge betweenness clusteringtfnohost important thing is the capability of
importing and exporting graphML, an XML baseite fdescribes a graptihat facilitate the
mission of generating the new coomgnts-based XMl file using style sheet that converts the

original file XMI based on té rules of the graphML.

ArgoUML

ArgoUML is a free UML design open sourceoko In this project we used ArgoUML-
0.20.BETA_2 that can reverse engin@ java codes and generate XMI1.2 file. At the beginning
a plan to plug this tool into our system avan mind, but due to the long time the reverse
engineering process takes whichynextend to severdlours or may not be accomplished at all.
This will affect the efficiency of the system, s@ will leave the user to use his discretion in
deciding to use any UML tool that supportingeating XMl version 1.2Moreover they use a
simple code generation rathteéan full forward engineering.

15

Stylus Studio
Stylus Studio is a commercial XML tool. | e “XSLT Mapper” to write the style sheet

mentioned earlier.

Sourceforge
It considered as one of the largest open source libraries | benefit from this site in taking the test
cases java codes from there also to seek fappropriate reverse engineering tool, since it has a

lot of these tools with varietyf specifications. All what you la to do is search for “XMI”

16

3 Methodology

The following diagram depicts the methodology graplty. It is followed by a description of

individual phases.

Reverse
Engineering

Read &
Analyze XMl

Document

Generate a
Generate

GraphML file

Cluster the
Graph

XMl
Document

Forward
Engineed

Figure 1: Project Phases

17

Project Phases

3.1 Reverse Engineering

Generate UML Models from Java codes and then exports XMl file by using any UML tools that
support exporting XMl v.1.2, This System is tbstthrough ArgoUML and most of the UML
tools can accomplish this task.

3.2 Read and Analyze XMl file

Read class diagram’s design elements andioatafrom XMl file, UML design elements are
classes, interfaces, components, and packagesh consist of combination of previous
elements. Classes, interfaces, components, &ndatients of packages are read. You will ask
why the contents of the packages and not thegupeskthemselves?? And this is to obtain more
cohered clusters sense you cargartfirm that a package doesndrtsists of anyoosely coupled
elements. Relations were also read and tbempling and complexity metrics values were

extracted.

Weights Calculations

Assigning weights for several kinds of relatioss that each kind of relation has a strength
weight associated to it. But not all the edggsresenting a relation from the same kind has the
same weight because we take into account theplaxity of the supplier and/or client design

element.

Relations Types
As stated in[16] they sorted relations according to itpdedency weight importance. Also they
stated that dependency relatisrthe most common relation

Complexity

Complexity of a design model is calculatedngsithe in/out degree of node i.e. number of

relations where the nodettse client or supplier.

18

Coupling
We can classify coupling metrics depending on their domain into:

Domain: Class

a. Export Coupling for Attributes (EC_Attr): Theumber of times the class is externally
used as attribute type. This is the number of attributes in other classes that have this
class as their type.

b. Import Coupling for Attributes (IC_Attr): The mber of attributesn the class having
another class or intiace as their type.

c. Export Coupling for Parameters (EC_Par): Thenber of times the aés is externally
used as parameter type. This is the numb@acdmeters defined aide this class that
have this class as their type.

d. Import Coupling for Parameters (IC_Paijhe number of parameters in the class
having another class or interface as their type.

Domain: Interface

a. Export Coupling for Attributes (EC_Attr): Thaumber of times the interface is used as
attribute type.

b. Export Coupling for Parameters (EC_Par): The number of times the interface is used as
parameter type.

c. Import Coupling for Parameters (IC_Par): The number of parameters in the interface

having an interface or class as their type

19

DC' | RELATION SYMBOL WCDG DWV OF RELATION
SYMBOL
[1] | Dependency Source |______ 5| Supplier DW = DC * C(Supplier)
C() = complexity of the class
[2] | Association Student DW1 = DC * C(Student) * C(College)

Studies

College

College

n, m = max destination multiplicity,
if n=0let1/n =0

Directed Association

Student
T Studies

College

College

02010Y0 020,

DW = DC * C(Student)

! DC = Degree of Complexity.

20

>

DC' | RELATION SYMBOL WCDG DWV OF RELATION
SYMBOL
AssociationClass DW1 = DC * C(Employment) * C(Person)
Company Person
i C(Company)
Employment
@ n =1, if edge starting from Association class.

[3] | Aggregation DW1 = DC * C(Whole) * C(Part)

Whole F>—— Part @
[4] | Composition : DW1 = DC * C(Whole) C(Part)

Whole [——o Part

=

DC' | RELATION SYMBOL WCDG DWV OF RELATION
SYMBOL
[5] | Binding 5 | DW = DC * C(Student)
College "1~ Student
----- >
[6] | Inheritance/ L DW1 = DC * C(Language) * C(Java)
. . Anguage Language
Generalization C(C++)
(1]
Java C++ @
[7] | Realization 5 @ DW = DC * C(Parser)
arser
=
HTMLFarser
@-

Table 1: Dependency Weigh Value Equations

22

3.3 Create Weighted Directed Graph

Generate a Graph such that each vertgxesents a design element and each edge
represents the relationship between those elesmAnd the weight of edge is calculated
as illustrated in Table 1:

£ Rpplet Viewer: clustering.ClusteringDemo.class

Applet

IFl

. Module

. FullTimeLecturer

_zciurer

[« T

. FarTimeLecturer

Edges Weight Threshold: 0

Save ! J |
:\ ‘Tmns_fnn’ninq -
Group Clusters | 3 6 [| | | TR ST - | e e

Mouse Mode

Applet started

Figure 2: Directed Weighted Graph

3.4 Cluster the Graph

Using Hierarchical divisivelustering methodology and a fEshold placed by the user

the weak edges are temporarily removeddperate clusters and replace them again.

23

< Applet Viewer: clustering ClusteringDemo.class

Applet

[a]
4
Q Course
% O Module
»
7 s
ODspanment b i
L
0 Address
%asspnn
Identification]
O PartTimel ecturar
i I I o
Edges Weight Threshold: 10 Mouse Mode
Save = {} 1

Transforming |~
Group Clusters 0 3 6 g9 12 15 18 21 24 27 30 ‘

Applet started

Figure 3: Clustered Graph

3.5 Generate GraphML file

Generate a temporary graphML file, and becauisean xml based format we extended it

to meets our needs, following is the schema of the modified graphML.

<?xml version="1.0" encoding="UTF-8"? >
<xs:schema xmins:xs= "http://www.w3.0rg/2001/XMLSchema"
elementFormDefault= "qualified"
targetNamespace= "http://graphml.graphdrawing.org/xmins/graphml”
xmins:xsi= "http://www.w3.0rg/2001/XMLSchema-instance"
xmins:graphml= " "http://graphml.graphdrawing.org/xmins/graphml” >
<xs:import namespace= "http://www.w3.0rg/2001/XMLSchema-
instance” schemalocation= "xsi.xsd" />
<xs:element name="graphml" >

<xs:complexType >

<xs:sequence >

<xs:element ref= "graphml:graph" />

24

</xs:sequence

<xs:attribute

</xs:complexType
</xs:element >
<xs:element name=

<xs:complexType
<xs:.sequence >
<xs:element
<xs:element
</xs:sequence
<xs:attribute
<xs:attribute
<xs:attribute
use="required" />
<xs:attribute

type= "xs:NCName" / >

</xs:.complexType
</xs:element >
<xs:element name=

<xs:complexType
<xs:sequence >
<xs:element
</xs:sequence
</xs:.complexType
</xs:element >
<xs:element
<xs:complexType
<xs:sequence >
<xs:element
</xs:sequence
<xs:attribute
<xs:attribute
</xs:.complexType

</xs:element >

name=

>
ref= "xsi:schemalocation" use= "required" />
>

llgraphll >

>

ref= "graphml.clusters" />

ref= "graphml.edges” />
>

name="Clustering_Weight_Key" use= "required" />

name="Edge Weight Key" use= "required" />

name="StringLabeller.LabelDefaultkey"

name="edgedefault" use= "required"

>

"clusters" >

>

maxOccurs= "unbounded" ref= "graphml:cluster" />

>

>

"cluster" >

>

maxOccurs= "unbounded" ref= "graphml:node" />

>

name="id" use= "required" type= "xs:integer" />

name="name" use= "required" type= "xs:NCName" / >

>

25

<xs:element name="node" >

<xs:complexType >

<xs:attribute name="id" use= "required" type= "xs:integer" />
<xs:attribute name="name" use= "required" type= "xs:NCName" / >
<xs:attribute name="xmi.id" use= "required"
type= "xs:NMTOKEN"/ >
</xs:.complexType >
</xs:element >
<xs:element = name="edges" >
<xs:complexType >
<xs:.sequence >
<xs:element maxOccurs= "unbounded" ref= "graphml:edge" />

</xs:sequence >
</xs:.complexType >
</xs:element >
<xs:element = name="edge" >
<xs:.complexType >
<xs:attribute name="RelType" use= "required"
type= "xs:NCName" / >
<xs:attribute name="directed" use= "required"
type= "xs:boolean" />
<xs:attribute name="edge_weight" use= "required"
type= "xs:decimal" />
<xs:attribute name="isRemoved" use= "required"
type= "xs:NCName" / >

<xs:attribute name="source" use= "required"
type= "xs:integer" />

<xs:attribute name="target" use= "required"
type= "xs:integer" />

</xs:complexType >
</xs:element >

</xs:schema >

Figure 4: GraphML Schema

26

3.6 Transfer GraphML to XMl file

Transform original XMl file into a new XMI based on GraphML file according to the

following algorithm:

<?xml version='1.0" ? >
<xsl:stylesheet version="1.0"
xmins:xsl= "http://www.w3.0rg/1999/XSL/Transform"

xmins:UML= "org.omg.xmi.namespace.UML"

xmins:a= "http://graphml.graphdrawing.org/xmlins/graphml|" >
<xsl:output method= "xml" />
<xsl:template match="/" >

<xsl:copy >
<xsl:copy-of select= "@*"/ >
<xsl:apply-templates/ >
</xsl:copy >
</xsl:template >
<xsl:template match="*" >
<xsl:copy >
<xsl:copy-of select= "@*"/ >
<xsl:apply-templates/ >

</xsl:copy >

</xsl:template >
<xsl:template match= "UML:Namespace.ownedElement[local-
name(parent::*[1]) = 'Model]" >

<xsl:copy >

<xsl:call-template name="graphml" />
<xsl:copy-of select= "@*"'/ >
<xsl:apply-templates/ >

</xsl:copy >

</xsl:template >

27

<xsl:template name="graphml" >
<xsl:for-each select="/fa:graphml/.//a:cluster" >

<xsl:choose >

<xslwhen test= "count(child::*) > 1" >

<xsl:variable name="cOne"
select="child::*[1)/@name" />

<xsl:variable name="cTwo"
select="child::*[2)/@name" />

<xsl:if test= "not((count(child::*) ='2"

and ((contains($cOne, '.java’) and contains($cOne, $cTwo)) or

(contains($cTwo, ".java’) and contains($cTwo, $cOne))))" >
<xsl:element name="UML:Component" >
<xsl:attribute name="xmi.id" >

<xsltext >.:000 </xsl:text
<xsl:value-of
select= "@id" / >
</xsl:attribute >
<xsl:attribute
name="isSpecification" >false </xsl:attribute >
<xsl:attribute
name="isRoot" >false </xsl:attribute >
<xsl:attribute
name="isLeaf* >false </xsl:attribute >
<xsl:attribute
name="isAbstract" >false </xsl:attribute >
<xsl:copy-of select= "@name"/ >
<xsl:element
name="UML:ModelElement.clientDependency" >
<xsl:for-each
select= "a:node" >
<xsl:element
name="UML:Dependency" >
<xsl:attribute

name="xmi.idref" >

28

<xsl:value-of select= "@xmi.id" />
</xsl:attribute >
<xsl:apply-
templates/ >
</xsl:element >
</xsl:for-each >
</xsl:element >
</xsl:element >
</xsl:if >
</xsl:when >

</xsl:choose >

</xsl:for-each >
</xsl:template >
<xsl:template match= "*[*/UML:Package/@xmi.idref]" />
<xsl:template match= "UML:Package[not(@xmi.idref)]" >
<xsl:apply-templates
select= "UML:Namespace.ownedElement/child::node()" />
</xsl:template >
<xsl:template match= "a:graphml" />
</xsl:stylesheet >

Figure 5: XSLT - GraphML2XMI.xsl|

3.7 Forward Engineering

Using proper forward engineering tool genergpe of components needed, like COM or
EJB, here we test our projagsing Sparx — Enterprise éhitect to generate EJBs.

29

4 System Design

4.1 Class Diagram Level # O:

cluster _ L

gimpotts

gitnports |

{}_ —_—————

ginstantistes

Imgotts

HLEESss

iTstantiate;a-
Faccessx /I\

HCCESE: |

— — 3 i xmi2diagram

Figure 6: Class Diagram Level # 0

30

fio

4.2 Input/Output Package

_I
fio

4.2.1 Isolated 10 Package:

® Open @ Save
& oetFileNamel) & saveFie()
& laadFie()

Figure 7: Input / Output Package

4.2.1.10pen Class

File chooser dialog tomport source XMl file.

4.2.1.2Save Class

File chooser dialog to exparesult XMl file, which consists of the generated
components.

31

4.3 XMI2GraphML Package

—

f# xmi2diagram

4.3.1 Isolated XMI2GraphML

0 ceateEgelan oK V) B

O GraphhLFiehandle
§ Gttt
0 i) ey
o telLabeler(y Svingabelly i G PR
ebriteep Atrkutes): My Lo
1 3 ! - Fetender

- orestebraphn <) 1
- oreatVerten(an o Vo) Archetypebiete
0 statElenert(3hng, Sting, St Atiibudes)

pree] -~
}ﬁmmww_eu |
| | |
O GraptiLFe | e ——
i G |
r)? gL il CrapthLFletander) ¢
0 a3t Grsph @Tmnmrm
0 apes) Gragh :
0 e g i i
0 InsfGraphCaleefion(g, Fienemefier): Lit 05 WD)
0 save{craph, hing) Cfgeﬁs{) Bt
0 stve{Crsph Prthes) | suEy 3¢ i) Gigh
1 saveNertcesSectionPntSteam, ragh) Us D) i
1 savebelgsSecton(PridShean Gragh) 05 el b
0 savellserData(UserDataCotaner PriShean) (} 0
1 il Data(g bockesn 05 gMame(]‘ iy
0 selGaphiLFietanden GrepiLFleHandgy) Us FE) e

0 Vercas

oD Vetces(SHig, Sig)
0 el String

0 el Sting)

0 gel¥erten() Vetex

0 treseirtei(Craph)

0 i) Sty

0 seblni(3tig)

0 gelLatel): Snglaheler

i Ve e~

O Readiit

us eetactodesDocurent, Sing)
as enbactGeneralzation Documend)
ﬂs rtaceatzation(Cocument)
ns enbacthssackin Documer)
us rfacthasClss Doctnert)

w5 ﬁ%&s—;— T as exbaciDepenency Dacumert)
- _«W; T ﬂs rtactemizsion(Cocument)
________ resdioe)
il I
| |
I I
[
________ [
1
‘ }zacoess» ‘ «impmM
[—"
_nmi [| ORelaim
‘ ‘ 4 il g
I tye g
‘ ‘ et Shing
t::@@:ﬂ‘ ¢ Rein)
ff Relaion(Sring, i)

0 (#lE() DecteoSparsefoe
0 gy
0 stlTypetShring)

_____ Lt SR 3 O seliif DrectedSpasefie)
| s)0 el iy
S o set¥niliShing)

0 resteEteShrng, tivg)
o

0 oetEl: Eoleeitt abeler
0 fieiht(Graph)

0 sethosCsaSie(it)

0 berEdaeWeitt): it
CP sellaxEigeieift)

0 elEw) kel

Figure 8: XMI 2 GraphML Package

32

0 Coupling

ABOESH

05 coulng Dacunert)

@ tectCoupingDocuert)
l!s e Docuned)

E? ecPa(Docuner)

drantiley

4.3.2 XMI2GraphML Dependencies

fio

e
i xmiZdiagram
[S
f \I/
L

i

Figure 9: XMI 2 GraphML Pack age Dependencies Level # 0

33

4.3.3 XMI2GraphML

©® GraphMLFileHandler

& GraghMLFileHandler()
@ startElemert()

e___

- mFileHandier 1

@ Coupling
CJS couplingl)
_____ & extractCoupling()
r
“ACCRESE

|
|
|
|
|
© ReadXMI |
Sty ainstantiates
o & resdihi) ‘r I
ki 2
M [1 ‘ |
\ (1] | ‘ |
} | ‘ ‘ | ‘ «impoﬂ»l ainstantistes ‘ |
[l L] |
| | e || N
| o - —|_—_—_; @ Relation
‘ | ‘ ‘ | ﬂz endPaints: String
B | & type: String
@ Vertices |&~——— J “Taléﬁﬁéééw & ymid: Sting
& vertices() | | & Relation)
@ vertices() \ [& Relation()
@ createVertex() ‘ @ createEdge()
@ getlabel) t _____ A etete — — | @ finaheights)
0 gethlame() N @ ostE)
@ getVertex() ‘ | @ getEdw()
@ getimiD() ‘ | o getEl)
@ setlame() ‘ | @ gethaxEdoe\Weight()
0 setimil) N 3 e o getTyped)
T Transform & getinap)
| £ smiFile: File anstantintes | @ SEHOIDO
—— — ¢ @ sethssClassSize()
| g UMLDizgrarm() % - Lm_u;gg _s»@s sethtaxEdgelVeight()
[— — = 7] cinstartiotes it cﬁ wtEs() o selType()
L™ T @ GraphMLFile o #00 e
& v @ sefdiDg
& GraphMLFile() | _eems g getvName()
& GraghMLFi() c? getvman()
@ load() BEtX_\f‘[.)O
@ load() & gebriFieq) | eaccessy]
& loadd) |
@ loadGraphCollection()
@ zave() |
& @ @ io::0pen
@ setGraphmLFileHandler()

|
|
|
| sacoesss
|
|

N

@ guiz:ManageComponents

@ ListChooser()
& getClusterhamel)
& getClusterset()

& cetFilehlame()
& loadFie()

Figure 10: XMI 2 GraphML Pack age Dependencies Level # 1

34

4.3.3.1Transform Class

Check the correctness of the input file ggaherate a normalizedtbcument that can be

parsed.

4.3.3.2Read XMI Class

Extract design elements and relations from Xi\él and call vertices class, relation class,

and coupling class respectivelyloild a directed weighted graph

4.3.3.3Vertices Class

Each design element will be represented agrtex labeled by the corresponding design

element name.

4.3.3.4Relation Class

Each kind of relation will be represented adir@cted edge, refer to Table 1, the weight
of the edge will be calculated in two stagesst, set the importance weight as the edge
weight, if multiple relations with the santBrection exist, set the summation of their
weights. In second stage, multiply this weighth the complexity weight as illustrated in
Table 1.

4.3.3.5Coupling Class

Extract coupling between design elements, amdguelation class to create an edge if
not exist and the weightqaal to total number of couph * importance weight of

coupling.

4.3.3.6GraphML File Class

A JUNG library class, we edit it tobtain graphML schema we need.

4.3.3.7GraphML File Handler Class
A JUNG library class that igsed by GraphML File Class.

35

4.4 CLUSTER Package

—

2 cluster

4.4.1 Isolated CLUSTER

@ EdgeWeightClusterer

o EdgevsightClusterer()
@ extract()
@ getEdgesRemoved)

Figure 11: Cluster Package

4.4.2 CLUSTER Dependencies

[1 [1

instantiat T
3 cluster —‘K";T:m—lrt;% H xmi2diagram
—

Figure 12: Cluster PackageDependencies Level # 0

36

4.4.3 CLUSTER

® EdgeWeightClusterer ® zmi2diagram::Relation

& endPairts: =ring

EdgeiVeightciust __ simparts
d: peleightClusterer() — K type: String
@ extract() _girﬂaﬂatﬂ%

& wmilly String
0 getEdgesRemoved)

& Relation()

& Relation?)

i@ createEdgel)
finalAieight)

getE()

getEcw)

et
gethiaxEdoetveight])
@ getTypel)

@ getwinapl)

@ getmill)

0 =zethzsClasssize)
@ setaxEdgeitieight()
0 =etTypel)

i setMeight)

i setmill)

o o @ @ @

Figure 13: Cluster Package Dependencies Level # 1

4.4.3.1Edge Weight Cluster Class

Begin with the whole graph as cluster after specifying threshold, edges bellow this

threshold will be progressively rewmed and clusters will be generated.

37

4.5 Graphical User Interface Package

—

2 gui

4.5.1 Isolated GUI

@ ManageComponents

L= - |

E QB BB E D B EE A EEE

]

getdFrame(). JFrame
getdContertPanel); JPanel
getdPanell). JPanel
ListChooser(Ohject]], Ohject[])
getClusterList(): JList
get&lList(); JList
getdScrollPanel). JScrollPane
getdscralPanet () JScrollPane
getiddButton(); JEutton
getAddAlButon), JButtan
getRemoveButton(): JButton
getRemovellBution) JButton
getJPanel () JPanel

getComponentiameField(); JTextFisld

getJPanel2() JPanel
getMextButton(): JButtan
getPreviousButton(): JEutton
getFinishButton(): JEutton

GS getClusterMame) Map
C;S getClusterset(): Map

@ Main

& main(Stringl])

ainstartistes

|
|
|
|
|
|
|
|
|
|
L

@ Cluster

o similarColors: Color

getFrame(). JFrame

zetlUpview ()
cluster&ndRecolorZublayoutDecoratar, int, Colar(], bodlean)
colorCluster(Set <E=, Color)

groupCluster] SublayoutDecarator, Set <E=)
getCluster=(): Map

get I ToolBarBat () JToolBar

getJButton): JButton

getJButtord () JEutton

zavel)

getCortainer(): JPanel

manageCiustersiint)

& getClustersSize() int

¢ dEEBE G§gEE @dE O

o — _ imports |
e i,

L«instantiate»
___saceessy
___[eimpeits

[3

| ginstantistes

@ VertexStringerlmpl

T

& enghled boolean
& label: Stringlabeller

5 1

o(’ WertexStringerimpl()
@ getlabel])

@ isEnabled()

@ =setEnabled)

imports

Figure 14: Graphical User Interface Package

38

4.5.2 GUI Package Dependency

2 cluster

zimports

H3 gui |__«instantiste:
FACCEITy |

I B S T—l |
o

|
|
|
|
| smccess 2 =miZdiagram

Figure 15: GUI PackageDependencies Level # 0

39

4.5.3 GUI Connections

@ fo::Save @ ioz0pen

& gatFieblarer)
& loadFie()

(.'f saveFie()

|
@ Cluster

o siniarColors: Color

O clusterAndRecalor()
@ getClsters()

C/S getClustersSize()
@ manageClusters()
o savel)

@ VertexStringermpl

& enabled: hoolean
& label: StringLabeller

3 & VertexStringeripl()
@ ueilshel)

‘ © isEnchied()

\ o sEratle)

\ T

o «\nstemﬂea i

\
\
\
\
\
\
\
A
® ManageComponents

|
|
|
|
|
|
|
L

@ Ligtthooser()
& getOlusteriame()
@ oelClstarset()

@ zmi2diagram:Relation

o endPaints: String
i type: String
4 milD: String

=

& Rellion()

& Releizn()
createEoyel)
finahfeight()

GefE()

getEdwi)

et
gethaxEdgelizight()
getType()

& gettinep)

@ getdmiD()

® sethssClagsSizel)
& setheEdgeeighi()

e e o 00 e

®

|

Figure 16: GUI PackageDependencies Level # 1

40

——C R aiport
o setieight() -0
£8CCESSy
‘ «instartiates. ' 36ming ‘
——EE] @ xmi2diagramzTransform [T @ cluster:EdgeWeightClust
xmi2diagram:: s | D e } } /lr cluster::EdgeWeightClusterer
£ il File
I L
| arstentstes = [[o EdoeheigntCisterer()
@ UMLDiagram() | | o extart)
i: getEs() | | @ eetEiesRemaved()
@ g0
& getviog o [t
& getviiame() \ [ey | |
& otvinen() \ [‘
& et DG | || \
e & oelkinFie) I }
T
_______________ T s o o MR s g oy s oot v)
\ |
,,,,,,,,,,,,,,, K it F N
\ |
1 T |
\ | \
\ | \
\ | \
\ | \
\ [\
\ \
77777777777777 o WD"J R & Vertices() | snsartter
B o verces() \
| @ cresteertex() |
«instantiates | weoessy @ oetlabel) ‘
| | 0 gethame() |
} ‘ 0 getVertex() ‘
O getdmiD()
| } o setlame() }
imparts ‘ ‘ ” 777777 @ setdmiD() ——
\
o | !
\ | | |
\ ‘ | |
LBCCRESY ‘ ‘ ‘ ‘
P N sopotte
\ T T
\ [|
‘ \ «\nﬁarﬂme» ‘ ‘
\ o |
\ L | ;
| ® xmi2diagram::GraphMLFile
|
| o GrapLFie)
| o GrapivLFie)
G & load)
WOV PR | 51"
® load)
@ loadGraphCollection()
@ save()
@ save()
@ setGraphhLFileHancler)

4.5.3.1Cluster Class

Main GUI represents the graet threshold usindider, represent theluster graph, and
call Manage Components Class prépgito export the new XMl file.

4.5.3.2Manage Components Class

Dual list manager GUI to name each component and manage them contents.

4.5.3.3Main Class

Main class is used to launch this tool.

41

4.6

@ smizdiagramzGraphMLFleHandier

Overall Class Diagram

of GrapwFistendan)
@ stuiemert} ety ——)
i |
| |
| |
| |
| |
| |
: : @ guizManageCompannats
| I empoen. Py —
| I o grithisinans))
: : e ——
| | T IFITE
| L
! : I il ——
| | | I
| | | LN
| | | I
L e e |- — — 7 — — il
& Grngnnri) I
o GretaFid I
& bty | b=
& i) ||mm.
e g 11|] s
£ =
.T..p uu--wﬂn.u-a-ol P St it St 1
| i IR
| | (AL
| i [
I | | e
[— | [RARL]
l i [
I I [RARRL
Ll
:I | @ guizClustor
: [e——
@ xenidiagram: Vedices | © e AraFacoen)
o Verteas) !
o Verices) |
@ cresteVeren) |
@ geLael) 5
]
o e
° oMY}
@ tetnen)
e]
T = T / i :
! | | o b0 | -
0ol i ||
| | =
I | | [|] i
l ‘l - - -___..-}:.".‘.!#f(‘ﬁ'.‘-’.‘?ﬁ.’.“;:‘:.‘_i._l
R 5]
| : 1l I | B ioopen
- I | pputoes :-mm : ppe—
. s .4
i | []] s | | iz
| I [} | I
aristatigse 1 [T | |
@ iz diagram:Read XM L AN
7 ; e e e e SR —‘:%“g @ wmi?diagram:Ralation \--——-—‘——-—-l :
_______ e R — |
I Wt Sting i
| o arlly Shiry]
! o rmationy |
: o msstiort) |
I :“,.m,]' @ clustor:-FdgaWalghiClistarns
| :"‘." P S P T——
| o gun & et}
| & st - i
pefiinanl)
! LR i)
I © setAsrtisnsSel)
| o sethmErigeniight)
| & sty
| ® s
B S e @ s
| = =
| |
| rfnunﬂ'.!!"'.‘l‘.‘! |
| 1
& emizdingram:Coupling
& cougingl)
& atraciCouing

Figure 17: Overall Class Diagram

42

o yonfien

5 Case Study

| arbitrarily choose an open source Forum Software toya@ats transformation in the

case study.

£ 002CB Demo-forum

. import XM Save.. |

[»]

. Ti @ StrinalWriter

1t
O Ao

O BirGesterator java
BufferedReader

Hashtahle
Gy ¥ O Ostrin ader
p Hﬁ’e\ng’msﬂeam‘) @
3
B v .9 StlE&wmnResu\t
Q o 78
R Dieteeris T ler 9
2 9
o1 _ EOHBShMBD - oUnsuppnnenEncntlingExcemmn
iﬂ i . MitgsTahle java 29 OSmngBuﬁerInputBtream
g . 28
il .‘h A ptee
! . 2 EIB i 2 @SOLExcepUun
e - %mh‘hwav@
g "
<g) w1
§ ‘ F@EXEE%MQD @ TLGD\ merFattory
& . Transformer
@ ,§9 <9 29 =
o
@
¥ e TransfmmewExce tion
2 QHI& @wmmsueam P
@ ¥ <%

: \Semces@a

Wector

m 5 allsenices
Mmamgnageua?a' b

q@tsuﬁbemdamwﬁuatmm

@

O Properiies
Sml\:y

q}rﬂmw@ege@eéxﬁeptj ana

O Enumeration

[4] I [
Edyes Weight Threshold: 173

Group Clusters =

0 268 528

T

Mouse Mode

Tr'hnsrnrming‘v
792 1056 1320 1584 1848 2112 2376 2640

Figure 18: Window#1 — Graph Representation

Total Number of Nodes = 52
Total Number of Edges = 85

DESIGN
ELEMENT
TYPE

CLASS INTERFACE | COMPONENTS| TOTAL

Quantity

39

3

10

52

Internal Design

Attribute

Parameters

Quantity

95

226

Table 2: Analytic of Design Elements

43

RELATION TYPE QUANTITY
Generalization 1
Abstraction 0
Association 0
Association class 0
Dependency 11
Permission 47
Import / Export Coupling Attribute 41
Import / Export Coupling Parameter| 99
Total Relations 199
Parallel Edges 114
Total Edges 85

Table 3: Analytic of Relations

Generated GraphML:

<?xml version="1.0" encoding="UTF-8"? >
<graphML xmins= "http://graphml.graphdrawing.org/xmlns/graphml|"
xmins:xsi= "http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation= "http://graphml.graphdrawing.org/xmins/graphml
file:///C:/Documents%20and%20Settings/Hind/Desktop/GraphMLSchema.
xsd" >

<graph edgedefault= "directed"
Edge_Weight_Key= "edu.uci.ics.jung.graph.decorators.EdgeWeightLabe
ller@10bbfle"

Clustering_Weight_Key= "edu.uci.ics.jung.graph.decorators.EdgeWeig
htLabeller@513d61"

IndexDefaultKkey= "edu.uci.ics.jung.graph.decorators.Indexer@ 19bfb3
0"

StringLabeller.LabelDefaultkey= "edu.uci.ics.jung.graph.decorators
.StringLabeller@194d372" >

44

<clusters >
<cluster id= "1" >
<node id= "21"
name="Date" />
<[cluster >
<cluster id="2" >
<node id= "41"
name="Hashtable" />
</cluster >
<cluster id= "3" >
<node id= "9"
name="SubscriberNotification" />
<node id= "48"
name="SubscriberNotification.java"
</cluster >
<cluster id= "4" >
<node id= "30"
name="FileInputStream" />
</cluster >
<cluster id= "5" >
<node id= "22"
name="Timestamp" />
</cluster >
<cluster id= "6" >
<node id= "42"
name="BufferedReader" />
</cluster >
<cluster id= "7" >
<node id= "51"
name="Transformer" />
</cluster >
<cluster id="8" >
<node id= "39"

name="SmileyManager.java" />

xmi.id=

Xmi.id=

Xmi.id=

xmi.id=

/>

Xmi.id=

xmi.id=

Xmi.id=

xmi.id=

Xmi.id=

".:0000000000000890"

".:0000000000000898"

..000000000000080E"

".:000000000000080D"

".:0000000000000862"

".:000000000000088B"

".:0000000000000FAD"

".:00000000000008AB"

".:000000000000083C"

45

<node id="8" xmi.id= ".:000000000000083D"
name="SmileyManager" />
</cluster >
<cluster id= "9" >
<node id= "29" xmi.id= ".:0000000000000FBD"
name="StringTokenizer" />
</cluster >
<cluster id= "10" >
<node id= "44" xmi.id= ".:.00000000000008B7"
name="TransformerFactory" />
</cluster >
<cluster id="11" >
<node id= "50" xmi.id= ".:000000000000087E"
name="StringWriter" />
</cluster >
<cluster id= "12" >
<node id="10" xmi.id= ".:0000000000000876"
name="StringBufferinputStream" />
</cluster >
<cluster id= "13" >
<node id= "28" xmi.id= ".:000000000000089C"
name="Map" / >
</cluster >
<cluster id= "14" >
<node id="47" xmi.id= ".:.000000000000086A"
name="IOException" />
</cluster >
<cluster id= "15" >
<node id="7" xmi.id= ".:0000000000000FOD"
name="Enumeration" />
</cluster >
<cluster id= "16" >
<node id="1" xmi.id= ".:00000000000008C0O"

name="StreamSource"

/>

46

</cluster >
<cluster id="17" >
<node id= "40"
name="UIDGenerator.java" />
<node id= "43"
name="UIDGenerator" />
</cluster >
<cluster id= "18" >
<node id= "19"

name="TransformerConfigurationException"

</cluster >
<cluster id= "19" >
<node id= "33"
name="OutputStream" />
</cluster >
<cluster id= "20" >
<node id= "32"
name="Error* />
<node id= "5"
name="Error.java" />
</cluster >
<cluster id="21" >
<node id= "26"
name="FileNotFoundException" />
</cluster >
<cluster id= "22" >
<node id= "50"
name="StringWriter" />
</cluster >
<cluster id= "23" >
<node id= "35"
name="UnsupportedEncodingException"
</cluster >
<cluster id= "24" >

xmi.id=

xmi.id=

Xmi.id=

/>

xmi.id=

Xmi.id=

Xmi.id=

Xmi.id=

xmi.id=

Xmi.id=

/>

..000000000000084D"

..000000000000084E"

n

..00000000000008AF"

..0000000000000872"

n

..00000000000007F8"

..00000000000007F7"

".:0000000000000866"

".:000000000000087E"

".:0000000000000882"

47

<node id="12" xmi.id= ".:.000000000000087A"
name="StringReader" />
</cluster >
<cluster id= "25" >
<node id="25" xmi.id= ".:0000000000000FB7"
name="InputStreamReader" />
</cluster >
<cluster id= "26" >
<node id="4" xmi.id= ".:000000000000085B"
name="File" />
</cluster >
<cluster id= "27" >
<node id= "15" xmi.id= ".:0000000000000843"
name="Smiley" />
</cluster >
<cluster id= "28" >
<node id="37" xmi.id= ".:.00000000000008A0"
name="Properties" />
</cluster >

<cluster id= "29" >

<node id= "24" xmi.id= ".:00000000000007EB"
name="ConnexionInfo.java" />
<node id= "45" xmi.id= ".:.00000000000007EC"

name="Connexionlnfo" />
</cluster >

<cluster id= "30" >

<node id="2" xmi.id= ".:00000000000008A4"
name="Vector" />

<node id= "14" xmi.id= ".:000000000000081A"
name="MailServices" />

<node id="3" xmi.id= ".:0000000000000818"
name="MailServices.java" />

</cluster >

<cluster id= "31" >

48

name="SQLException"

name="StreamResult"

name="TransformerException"

name="Transformer"

<node id= "16"
/>
</cluster >
<cluster id= "32" >
<node id= "38"

name="HashMap" / >

</cluster >
<cluster id= "33" >
<node id= "27"
/>
</cluster >
<cluster id= "34" >
<node id= "34"
/>
</cluster >
<cluster id= "35" >
<node id= "51"
/>

</cluster >

<cluster id= "36" >

<node id= "13"
name="MimeTable.java" />

<node id= "46"
name="InputStream" />

<node id= "31"
name="CForum.java" />

<node id= "23"
name="Exception" />

<node id= "20"
name="ResearchParameters" />

<node id= "36"
name="MimeTable" />

<node id= "17"
name="ResearchParameters.java" />

Xmi.id=

xmi.id=

Xmi.id=

xmi.id=

Xmi.id=

xmi.id=

Xmi.id=

Xmi.id=

xmi.id=

xmi.id=

Xmi.id=

Xmi.id=

n

n

n

n

n

n

n

..0000000000000887"

..0000000000000894"

..00000000000008BC"

..00000000000008B3"

..00000000000008AB"

..000000000000082F"

.:000000000000086E"

..00000000000007CD"

..0000000000000COF"

..0000000000000803"

.:0000000000000831"

.:0000000000000802"

49

<node id="18" xmi.id= ".:00000000000007D7"
name="CForum" / >
<node id= "52" xmi.id= ".:00000000000008F1"
name="String" />
<node id="11" xmi.id= ".:00000000000008CE"
name="ContentHandler" />
</cluster >

<cluster id= "37" >

<node id= "49" xmi.id= ".:0000000000000825"
name="SendMessageException" />

<node id="6" xmi.id= ".:0000000000000824"
name="SendMessageException.java" />

<[cluster >
</clusters >
<edges >

<edge source= "24" target= "21" directed= “true"
RelType= "Dependency” edge weight= "2.0" isRemoved= "True" />

<edge source= "31" target= "50" directed= "true"
RelType= "Dependency" edge weight= "29.0" isRemoved= "True" />

<edge source= "14" target= "2" directed= "true"
RelType= "Coupling" edge weight= "200.0" isRemoved= "False" />

<edge source= "18" target= "52" directed= "true"
RelType= "Coupling® edge weight= "780.0" isRemoved= "False" />

<edge source= "18" target= "23" directed= “true"
RelType= "Coupling® edge weight= "2640.0" isRemoved= "False" />

<edge source= "40" target= "21" directed= "true"
RelType= "Dependency" edge weight= "2.0" isRemoved= "True" />

<edge source= "18" target= "28" directed= "true"
RelType= "Coupling" edge weight= "60.0" isRemoved= "True" />

<edge source= "24" target= "45" directed= "true"
RelType= "Dependency" edge weight= "2641.0" isRemoved= "False" />

<edge source= "13" target= "38" directed= “true"

RelType= "Dependency" edge weight= "8.0" isRemoved= "True" />

50

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

<edge source= "48" target= "14" directed= "true"
"Dependency” edge weight= "6.0" isRemoved= "True" />
<edge source= "18" target= "2" directed= "true"
"Coupling” edge_weight= "120.0" isRemoved= "True" />
<edge source= "32" target= "52" directed= "true"
"Coupling” edge_weight= "20.0" isRemoved= "True" />
<edge source= "48" target= "2" directed= "true"
"Dependency" edge weight= "6.0" IisRemoved= "True" />
<edge source= "31" target= "16" directed= "true"
"Dependency” edge weight= "29.0" isRemoved= "True" />
<edge source= "13" target= "4" directed= "true"
"Dependency” edge weight= "8.0" isRemoved= "True" />
<edge source= "31" target= "11" directed= "true"
"Dependency” edge_weight= "29.0" isRemoved= "True" />
<edge source= "18" target= "36" directed= “true"
"Coupling” edge_weight= "60.0" isRemoved= "True" />
<edge source= "13" target= "36" directed= "true"
"Dependency” edge weight= "2641.0" isRemoved= "False" />
<edge source= "3" target= "7" directed= "true"
"Dependency” edge weight= "5.0" isRemoved= "True" />
<edge source= "20" target= "52" directed= "true"
"Coupling” edge_weight= "15.0" isRemoved= "True" />
<edge source= "14" target= "52" directed= “true"
"Coupling” edge_weight= "125.0" isRemoved= "True" />
<edge source= "39" target= "8" directed= "true"
"Dependency” edge weight= "2641.0" isRemoved= "False" />
<edge source= "36" target= "38" directed= "true"
"Coupling” edge_weight= "25.0" isRemoved= "True" />
<edge source= "31" target= "36" directed= "true"
"Dependency” edge weight= "29.0" isRemoved= "True" />
<edge source= "15" target= "52" directed= “true"
"Coupling” edge_weight= "40.0" isRemoved= "True" />
<edge source= "9" target= "2" directed= = "true"

"Coupling” edge_weight= "15.0" isRemoved= "True" />

51

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

<edge source= "13" target= "30" directed= "true"
"Dependency” edge weight= "8.0" isRemoved= "True" />
<edge source= "31" target= "22" directed= "true"
"Dependency” edge weight= "29.0" isRemoved= "True" />
<edge source= "31" target= "44" directed= "true"
"Dependency” edge_weight= "29.0" isRemoved= "True" />
<edge source= "31" target= "26" directed= “true"
"Dependency" edge weight= "29.0" IisRemoved= "True" />
<edge source= "13" target= "29" directed= "true"
"Dependency” edge weight= "8.0" isRemoved= "True" />
<edge source= "36" target= "52" directed= "true"
"Coupling” edge_weight= "525.0" isRemoved= "False" />
<edge source= "48" target= "47" directed= "true"
"Dependency” edge_weight= "6.0" isRemoved= "True" />
<edge source= "31" target= "41" directed= “true"
"Dependency” edge_weight= "29.0" isRemoved= "True" />
<edge source= "31" target= "51" directed= "true"
"Dependency" edge weight="29.0" isRemoved= "True" />
<edge source= "13" target= "42" directed= "true"
"Dependency” edge weight= "8.0" isRemoved= "True" />
<edge source= "18" target= "8" directed= "true"
"Coupling” edge_weight= "60.0" isRemoved= "True" />
<edge source= "31" target= "46" directed= “true"
"Dependency” edge_weight= "29.0" isRemoved= "True" />
<edge source= "31" target= "47" directed= "true"
"Dependency" edge weight="29.0" isRemoved= "True" />
<edge source= "8" target= "2" directed= "true"
"Coupling” edge_weight= "25.0" isRemoved= "True" />
<edge source= "31" target= "18" directed= "true"
"Dependency” edge weight= "2641.0" isRemoved= "False" />
<edge source= "3" target= "2" directed= “true"
"Dependency” edge_weight= "5.0" isRemoved= "True" />
<edge source= "31" target= "30" directed= "true"

"Dependency” edge weight= "29.0" isRemoved= "True" />

52

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

<edge source= "17" target= "20" directed= "true"
"Dependency” edge weight= "2641.0" isRemoved= "False" />
<edge source= "31" target= "34" directed= "true"
"Dependency” edge weight= "29.0" isRemoved= "True" />
<edge source= "48" target= "37" directed= "true"
"Dependency” edge_weight= "6.0" isRemoved= "True" />
<edge source= "31" target= "2" directed= "true"
"Dependency" edge weight= "29.0" IisRemoved= "True" />
<edge source= "31" target= "35" directed= "true"
"Dependency” edge weight= "29.0" isRemoved= "True" />
<edge source= "3" target= "37" directed= "true"
"Dependency” edge_ weight= "5.0" isRemoved= "True" />
<edge source= "5" target= "32" directed= < "true"
"Dependency” edge_weight= "2641.0" isRemoved= "False" />
<edge source= "3" target= "4" directed= “true"
"Dependency” edge_weight= "5.0" isRemoved= "True" />
<edge source= "18" target= "20" directed= "true"
"Coupling” edge_weight= "180.0" IisRemoved= "False" />
<edge source= "6" target= "49" directed= "true"
"Dependency” edge weight= "2641.0" isRemoved= "False" />
<edge source= "31" target= "1" directed= "true"
"Dependency” edge weight= "29.0" isRemoved= "True" />
<edge source= "31" target= "28" directed= “true"
"Dependency” edge_weight= "29.0" isRemoved= "True" />
<edge source= "18" target= "33" directed= "true"
"Coupling” edge_weight= "60.0" isRemoved= "True" />
<edge source= "40" target= "43" directed= "true"
"Dependency” edge weight= "2641.0" isRemoved= "False" />
<edge source= "13" target= "25" directed= "true"
"Dependency” edge_ weight= "8.0" isRemoved= "True" />
<edge source= "31" target= "33" directed= “true"
"Dependency” edge_weight= "29.0" isRemoved= "True" />
<edge source= "31" target= "12" directed= "true"

"Dependency” edge weight= "29.0" isRemoved= "True" />

53

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

RelType=

<edge source= "31" target= "8" directed= "true"
"Dependency” edge weight= "29.0" isRemoved= "True" />
<edge source= "31" target= "27" directed= "true"
"Dependency” edge weight= "29.0" isRemoved= "True" />
<edge source= "31" target= "43" directed= "true"
"Dependency” edge_weight= "29.0" isRemoved= "True" />
<edge source= "18" target= "11" directed= “true"
"Coupling” edge_weight= "780.0" IisRemoved= "False" />
<edge source= "9" target= "52" directed= “"true"
"Coupling” edge_weight= "60.0" isRemoved= "True" />
<edge source= "31" target= "10" directed= "true"
"Dependency” edge weight= "29.0" isRemoved= "True" />
<edge source= "31" target= "37" directed= "true"
"Dependency” edge_weight= "29.0" isRemoved= "True" />
<edge source= "31" target= "21" directed= “true"
"Dependency” edge_weight= "29.0" isRemoved= "True" />
<edge source= "31" target= "4" directed= “true"
"Dependency" edge weight="29.0" isRemoved= "True" />
<edge source= "49" target= "52" directed= "true"
"Coupling” edge_weight= "30.0" isRemoved= "True" />
<edge source= "48" target= "46" directed= "true"
"Dependency” edge_ weight= "6.0" isRemoved= "True" />
<edge source= "45" target= "52" directed= “true"
"Coupling” edge_weight= "45.0" isRemoved= "True" />
<edge source= "43" target= "52" directed= "true"
"Coupling” edge_weight= "15.0" isRemoved= "True" />
<edge source= "31" target= "19" directed= "true"
"Dependency” edge weight= "29.0" isRemoved= "True" />
<edge source= "8" target= "52" directed= "true"
"Coupling” edge_weight= "25.0" isRemoved= "True" />
<edge source= "3" target= "14" directed= "true"
"Dependency” edge_weight= "2641.0" isRemoved= "False" />
<edge source= "48" target= "9" directed= "true"

"Dependency” edge weight= "2641.0" isRemoved= "False" />

54

<edge source= "39" target= "2" directed= “true"
RelType= "Dependency" edge weight= "3.0" isRemoved= "True" />
<edge source= "13" target= "47" directed= "true"
RelType= "Dependency" edge weight= "8.0" isRemoved= "True" />
<edge source= "14" target= "4" directed= "true"
RelType= "Coupling" edge weight= "25.0" isRemoved= "True" />
<edge source= "18" target= "46" directed= “true"
RelType= "Coupling® edge weight= "180.0" isRemoved= "False" />
<edge source= "18" target= "45" directed= "true"
RelType= "Coupling" edge weight= "120.0" isRemoved= "True" />
<edge source= "39" target= "15" directed= "true"
RelType= "Dependency" edge weight= "3.0" isRemoved= "True" />
<edge source= "31" target= "38" directed= "true"

RelType= "Dependency" edge weight= "29.0" isRemoved= "True" />

<edge source= "49" target= "23" directed= “true"
RelType= "Genaralization" edge_weight= "18.0" isRemoved= "True" />
</edges >

</graph >

</graphml| >

Figure 19: Forum Case Study GraphML File

WEIGHTS AVERAGE 404.2771
Weights Standard Deviation | 889.2613

Table 4: Analytic of Relations

Highest Couple design models = 2640 betw€&orum & Exception, the second highly
coupled is when edge weight = 780 theragen2 edges has this weight and the most

frequent weight was 29 it replicated for 26 times.

6 Components remain as they were.

29 Components contaimme design models

55

2 Components were added

To refine the results usean manually manage the components; naming them and also

add or remove some of its constituents.

g Manage Components

Cluster [2 /37] All Hodes:

Enter Camponent Mame

[»

Wector StreamSource
MailServices Add File

IMaiISenﬂces.ia\ra Error.java

SendMessageException.java

Enumeration =

SmileyiManager

SubscriberNotification

StringBufferinputStream

ContentHandler

Remove Al |[StringReader

B MimeTable.java

Smiley

SOLEXception

ResearchParameters.java

Add Al

Remove

4|

Previous H Next || Finish ‘

Figure 20: Window#2 — Components Manager

56

6 Conclusion and Future Work

In today’s fast paced world, there & huge demand for renovating object-oriented
systems into component-based systeRenovation of object-oriented systems into
component-based systems decreases the complexity of the systems through lowering the
number of system constituent. This is achieved by grouping them into individual
components that provide a well defined systieature. Decreasing the complexity, in

turn, leads to improving the understandabibfythe system, reducing maintenance cost,

enhancing the ability to modify or fditating the evolun of the system.

This paper demonstrated the generationcamponent-based system from an object-
oriented design using UML class diagrams. It was achieved by developing a system
recovery tool that convertan object-oriented structuraesign into component-based
software. This tool was testea java programming and it watso ascertained that it can

be used for any programming language.
This system tool could be enhanced infiltere by improving the weights for relations.

One way to do this could be by using neuraweeks to specify these weights rather than

deriving them empirically.

57

References

[1] Baudry, B., L. Traon, Y., G. Sunye, “Testability Analysis of a UML Class
Diagram”, IEEE, 2002, Ottawa, Canada, pp. 54-65.

[2] Brandes U., C. Pich, “GraphML Traformation”, Springer, 2004, pp. 89-99.

[3] Burd E.L., M. Munro, “Enriching Prograr@omprehension for Software Reuse”,
Proceeding of Fifth Int'l Worksop Program Comprehension, pp.130-137, 1997.

[4] Cheng D., R. Kannan, S. Vempala,\8ang, “A Divide-and-Merge Methodology
for Clustering”, PODS, 2005.

[5] Chiricota, Y.; F. Jourdan, and G. Melanco8pftware components capture using
graph clustering”Proceedings of 11th IEEE International Workshop on Program
Comprehension, 10-11 May 200%.217- 226.

[6] Chitnis, M., P. Tiwari, L. Ananthanitty, “The UML Class Diagram: Partl”,
2003.

[7] Dangon S., “A Cluster Algorith for Graphs”, CWI, 2000.

[8] Deursen, A., B. Elsinga, P. Klint, al’l Tolido. “From Legacy to Component:
Software Renovation in Three Step€AP Gemini. Institute, CWI, 2000.

[9] Ding C., X. He, “Cluster merging andgplitting in hierarchical clustering
algorithms”, IEEE ICDM, 2002, pp. 139- 146.

[10] Ding C., X. He, H. Zha, M. Gu, H. 8ion, “A Min-max Cut Algorithm for Graph
Partitioning and Data Clustering.” IEEE' Conference on Data Mining, 2001, pp.
107 -114.

[11] Errickson-Connor B., “Truth or conseques: legacy applite®n modernization”,

Business Integration Journal, 2003.

[12] G. Marcela, M. Piattini, C. CalerdEmpirical Validation of Class Diagram
Metrics”, IEEE, 2002. pp. 195-203.

58

[13] Genero, M., M. Piattini, C. Calero, “A Survey of Metrics for UML Class
Diagrams”, JOT, 2005.

[14] Hitz M., B. Montazeri, “Measuring @pling and Cohesion in Object-Oriented
Systems”, Proc. Int'l Symp. Applied Gmrate Computing, linterrey, Mexico,
1995.

[15] Jain H., N. Chalimeda, N. Ivaturi, Reddy, “Business Component Identification
- A Formal Approach”, Proceedings thfe 5th IEEE International Conference on
Enterprise Distributed Object Computing, p.183, September 04-07, 2001.

[16] Kang, D., B. Xu, J. Lu, W. Chu, “A QGoplexity Measure for Ontology Based on
UML", IEEE, 2004, pp. 222-228.

[17] Koschke R., “Atomic Architectural Component Recovery for Program
Understanding and Evolution,” Proceedings of the International Conference on

Software Maintenance, October 2002.

[18] Lee E., B. Lee, W. Shin, @Wu, “A Reengineering Poess for Migrating from an
Object-oriented Legacy System t€amponent-based System”, IEEE, 2003.

[19] Lee J., S. Jung, S. Kim, W. Hyun, Bam, “Component Identification Method
with Coupling and Cohesion”, IEEE, 2001.

[20] Li B., “Managing Dependencies in Capaonent-Based Systems Based On Matrix
Model”, Proc. Of Net.Object.Day&003, 22-25, Sept. 2003, Erfurt, Germany.

[21] Luo J., R. Jiang, L. Zhang, H. Mei, J. Sun, “An Experimental Study of Two
Graph Analysis Based Component piae Methods for Object-Oriented
Systems”. IEEE, 2004, pp. 390-398.

[22] Manso M., M. Genero, M. Piattini, “No-redundant Metrics for UML Class
Diagram Structural Complexity”, CAISE, 2003, pp. 127-142.

[23] Mehta A, and GT. Heineman, “Evolving legasystem features into fine-grained
components”, ACM, 2002, pp. 417-427.

[24] MOF 2.0/XMI Mapping Specification, v2.1, OMG, 2005.

59

[25] Ncube, C., and N. Maiden."PORE: Procurement — Oriented Requirement
Engineering Method for the Cgunent-Based Systems Engineering
Development Paradigm”, Internation&brkshop on Component-Based Software
Engineering, IEEE, 1999.

[26] Neville J., M. Alder, D. Jensen, “Clesing Relational Dat&Jsing Attribute and
Link Information”, n Proceedings of the Text Mining and Link Analysis
Workshop, 18th International Joinb@ference on Artificial Intelligence, 2003.

[27] Ovlinger J., K. Lieberherr, “Class Gra Views”, Northeastern University, 1998.

[28] Sneed H., “Extracting Business Logioiin existing COBOL programs as a basis
for Redevelopment”, IEEE, 2001.

[29] Tansalarak N., K.T. Claypool, “CGCAn Architecture to support Better and
Faster Component Evolution”, Secondeimational Workshop on Unanticipated
Software Evolution, Warsaw, Poland, 2003.

[30] Tzerpos V., R. C. Holt, “Software Bgwlogy Automatic Clustering of Software
Systems”

[31] Washizaki H., H. Yamamoto, Y. Fukazaw“A Metrics Suite for Measuring
Reusability of Software Components”, Software Metrics Symposium, 2003.
Proceedings. Ninth International (2003), pp. 211-223.

[32] YiT., F.Wu, C. Gan, “A comparison afietrics for UML class diagrams”, ACM
SIGSOFT Software Engineering Notes, v.29 n.5, 2004.

Books

[33] Cheesman J., and J. Daniels, “UMComponents: A Simple Process for
Specifying Component-Basedf8ware”, Addison-Wesley, 2001.

[34] Heineman G., W. Councill, “Component-&ad Software Engineering: Putting the
Pieces Together”, Addison Wesley, 2001.

[35] Kay M., “XSLT 2.0 Programmer's Reference”, Wrox, 3rd edition, 2004.

60

[36] Larman C., “Applying UML and Patternsin Introduction to Object-Oriented
Analysis and Design and lterative \i@opment”, 3rd Ed., Prentice Hall, 2005.

[37] Sommerville J., “Software Enginerg”, 6th Ed., Addison Wesley, 2001.

[38] Szyperski C., D. Gruntz, and S. MuréComponent Software: Beyond Object-
Oriented Programming”, Addison Wesl&rofessional, 2nd edition, November
2002.

[39] Tennison J., “Beginning XSLT”, Wrox Bss, Chicago, lllinois, May 2002.

Web Sites

[40] http://graphml.graphdrawing.org/

[41] http://jlung.sourceforge.net/

[42] http://www.omg.org/technology/documents/formal/xmi.htm

[43] http://www.sdmetrics.com

[44] http://www.uml.org

[45] http://www.w3.0rg/TR/xslt

61

http://graphml.graphdrawing.org/
http://jung.sourceforge.net/
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.sdmetrics.com/
http://www.uml.org/
http://w3.org/TR/xslt

	 ACKNOWLEDMENTS
	 TABLE OF CONTENTS
	ABSTRACT
	 Introduction
	Project Goal
	Project Objectives
	Methodology
	Overview

	1 Review of Relevant and Related Literature
	1.1 Legacy System Renovation
	Motivation: The Business Case for Renovation
	1.1.1 Renovate From Source Code
	1.1.2 Renovate From Design:
	1.2 Unified Modeling Language (UML)
	Why Use UML
	UML Diagrams
	Structural diagrams
	Class diagram
	Component diagram
	Xml Meta-model Interchange (XMI)

	1.3 Design Metrics
	Coupling
	Cohesion
	Complexity

	1.4 Reverse Engineering
	1.5 Clustering Technique
	Partitional Clustering
	Hierarchical Clustering
	Agglomerative Clustering (Bottom-Up)
	Divisive Clustering (Top-Down)

	1.6 Forward Engineering
	1.7 System Reengineering

	2 Tools
	SDMetrics
	Java Universal Network / Graph (JUNG)
	ArgoUML
	Stylus Studio
	Sourceforge

	3 Methodology
	 Project Phases
	3.1 Reverse Engineering
	3.2 Read and Analyze XMI file
	Weights Calculations
	3.3 Create Weighted Directed Graph
	3.4 Cluster the Graph
	3.5 Generate GraphML file
	3.6 Transfer GraphML to XMI file
	3.7 Forward Engineering

	4 System Design
	4.1 Class Diagram Level # 0:
	4.2 Input/Output Package
	4.2.1 Isolated IO Package:
	4.2.1.1 Open Class
	4.2.1.2 Save Class
	4.3 XMI2GraphML Package
	4.3.1 Isolated XMI2GraphML
	4.3.2 XMI2GraphML Dependencies
	4.3.3 XMI2GraphML
	4.3.3.1 Transform Class
	4.3.3.2 Read XMI Class
	4.3.3.3 Vertices Class
	4.3.3.4 Relation Class
	4.3.3.5 Coupling Class
	4.3.3.6 GraphML File Class
	4.3.3.7 GraphML File Handler Class

	4.4 CLUSTER Package
	4.4.1 Isolated CLUSTER
	4.4.2 CLUSTER Dependencies
	4.4.3 CLUSTER
	4.4.3.1 Edge Weight Cluster Class

	4.5 Graphical User Interface Package
	4.5.1 Isolated GUI
	4.5.2 GUI Package Dependency
	4.5.3 GUI Connections
	4.5.3.1 Cluster Class
	4.5.3.2 Manage Components Class
	4.5.3.3 Main Class

	 4.6 Overall Class Diagram

	5 Case Study
	6 Conclusion and Future Work
	 References

