

FF RR OO MM OO BB JJ EE CC TT --OO RR II EE NN TT EE DD TT OO CC OO MM PPOO NN EE NN TT SS::
GGeenneerr aatt iinngg CCoommppoonneenntt--BBaasseedd SSooff ttwwaarr ee ff rr oomm UUMM LL DDiiaaggrr aammss

:::: SSuubbmmii tttteedd bbyy::::

Hind Al-Hakami

:::: SSuuppeerrvviissoorrss::::

Professor Ghazy Assassa and Dr. Amir Touir

 K ING SAUD UNIVERSITY

COLLEGE OF COMPUTER AND I NFORMATION SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

IN THE NAME OF ALLAH
THE COMPASSIONATE

THE MERCIFUL

 i

ACKNOWLEDMENTS

To start with, I want to thank the Almighty Allah for his blessings and benevolence. They
ensured the completion of this task in a satisfactory manner. I was able to overcome the arduous
challenges of writing a research paper only because of the wonderfully warm and supportive
environment at home. My parents made sure that I was able to focus on this paper without the
usual worries of life. To them, I owe everything. I was very fortunate to also have the strong and
unwavering support of my teachers. First and foremost, I owe a huge debt of gratitude to
Professor Hassan Mathkour. He helped me conceptualize the project and encouraged me to keep
going through all the rough patches along the journey. My supervisors, Professor Ghazy Assassa
and Dr. Amir Touir, went beyond the call of duty to not only guide me at every stage of this
project but also motivated me to strive for excellence. Under the guidance of these three great
teachers, I learnt more than any book could have taught me.

 ii

TABLE OF CONTENTS

ACKNOWLEDMENTS.. II

TABLE OF CONTENTS... III

LIST OF TABLES ...V

LIST OF FIGURES...VI

LIST OF FIGURES...VI

ABSTRACT .. 1

INTRODUCTION... 2
Project Goal.. 4
Project Objectives... 4
Methodology... 4
Overview... 5

1 REVIEW OF RELEVANT AND RELATED LITERATURE 6
1.1 Legacy System Renovation... 6

Motivation: The Business Case for Renovation..6
1.1.1 Renovate From Source Code..6
1.1.2 Renovate From Design:...8

1.2 Unified Modeling Language (UML).. 9
Why Use UML..10
UML Diagrams...10
Structural diagrams..10
Class diagram..10
Component diagram...10
Xml Meta-model Interchange (XMI)...10

1.3 Design Metrics.. 11
Coupling..11
Cohesion..11
Complexity...12

1.4 Reverse Engineering... 12
1.5 Clustering Technique.. 13

Partitional Clustering...13
Hierarchical Clustering...13

1.6 Forward Engineering.. 14
1.7 System Reengineering.. 14

 iii

2 TOOLS... 15
SDMetrics...15
Java Universal Network / Graph (JUNG)...15
ArgoUML ...15
Stylus Studio..16
Sourceforge..16

3 METHODOLOGY... 17
Project Phases... 18
3.1 Reverse Engineering... 18
3.2 Read and Analyze XMI file.. 18

 Weights Calculations...18
3.3 Create Weighted Directed Graph.. 23
3.4 Cluster the Graph.. 23
3.5 Generate GraphML file... 24
3.6 Transfer GraphML to XMI file... 27
3.7 Forward Engineering.. 29

4 SYSTEM DESIGN.. 30
4.1 Class Diagram Level # 0:.. 30
4.2 Input/Output Package.. 31
4.3 XMI2GraphML Package.. 32
4.4 CLUSTER Package.. 36
4.5 Graphical User Interface Package... 38
4.6 Overall Class Diagram... 42

5 CASE STUDY.. 43

6 CONCLUSION AND FUTURE WORK .. 57

REFERENCES.. 58

 iv

LIST OF TABLES

Table 1: Dependency Weigh Value Equations... 22

Table 2: Analytic of Design Elements.. 43

Table 3: Analytic of Relations.. 44

Table 4: Analytic of Relations.. 55

 v

LIST OF FIGURES

Figure 1: Project Phases.. 17

Figure 2: Directed Weighted Graph.. 23

Figure 3: Clustered Graph... 24

Figure 4: GraphML Schema... 26

Figure 5: XSLT - GraphML2XMI.xsl.. 29

Figure 6: Class Diagram Level # 0... 30

Figure 7: Input / Output Package.. 31

Figure 8: XMI 2 GraphML Package... 32

Figure 9: XMI 2 GraphML Package Dependencies Level # 0... 33

Figure 10: XMI 2 GraphML Package Dependencies Level # 1... 34

Figure 11: Cluster Package... 36

Figure 12: Cluster Package Dependencies Level # 0.. 36

Figure 13: Cluster Package Dependencies Level # 1.. 37

Figure 14: Graphical User Interface Package... 38

Figure 15: GUI Package Dependencies Level # 0.. 39

Figure 16: GUI Package Dependencies Level # 1.. 40

Figure 17: Overall Class Diagram.. 42

Figure 18: Window#1 – Graph Representation.. 43

Figure 19: Forum Case Study GraphML File... 55

Figure 20: Window#2 – Components Manager.. 56

 vi

ABSTRACT

Demand for component-based software development is increasing exponentially due to highly

dynamic environments confronting software systems in today’s world. This is a result of factors

such as frequent changes in business (user) requirements and challenging development

schedules. Many of these challenges are indeed directly related to rapid changes in software and

hardware technologies. To deal with this environment, this project develops a tool to generate

component-based software from object-oriented design. It is expected that this tool will facilitate

the transformation of object-oriented legacy system to component-based system by using their

design parameters or build a new component-based system.

 1

Introduction

Change is the only constant in the contemporary world. While this is true for most aspects of our

lives today, it is particularly so for software development. This field is responding to forces of

change from many directions: software development life cycle is getting exponentially shorter,

software application domains are expanding rapidly, pressures on the software development

costs are higher than ever before, and there is an ever-increasing need for integration of different

domains. In addition, there are additional pressures to change resulting from new technological

advances in both software and hardware.

The famous scientist Charles Darwin once wrote, “It is not the strongest of the species that

survive nor the most intelligent, but the ones who are most responsive to change.” His words are

as relevant to the software companies as they are to any other specie. Thus, the future success

and survival of software companies will depend critically on their ability to manage complexity

and rapidly adapt to change. More specifically, the ability to reuse system components already

developed will be a key success factor to survive and respond to the rapidly changing

requirements of the market. This implies that the development process must change its focus

from programming-intensive activities to greater emphasis on reuse, integration, standards,

management of complex and flexible structures, finding proper solutions, tradeoff analysis and

marketing survey.

Component recovery and re-modularization were strategies used to get a firm grip on large and

complex legacy systems suffering from ad-hoc changes. This was done by recovering logical

components and restructuring the physical components accordingly to decrease coupling among

components and thereby increase the cohesion within components. The idea that software should

be componentized, built from prefabricated components, is not a new one. It was first published

in Douglas McIlroy's address at the NATO conference on software engineering in Garmisch,

Germany, 1968 titled “Mass Produced Software Components.” This conference set out to

counter the so-called software crisis. With the increase in the speed of change, the relevance and

popular acceptance of this idea has also grown.

 2

It is now estimated that the largest portion of traditional software development cost goes to

maintenance process. According to some estimates, almost 80 percent of the applications budget

is typically allocated to software maintenance, as many legacy systems tend to be very hard to

adapt and, over time, suffer from lack of proper documentation. In addition, those systems find it

harder to keep pace with changes required by the evolving business needs and advances in

technology. Beside all this, the growing need for intra-organization collaboration and knowledge

sharing makes it imperative for the companies to modernize for their survival.

There are many options for transforming legacy systems into component based systems: it can be

done semi-automatically or automatically. In this paper we deal with a subset of these

approaches.

Software systems from the past (“legacy” systems) did not anticipate the pace of change in the

modern world. Thus they suffer from several drawbacks:

• They tend to be very hard to adapt.

• It is hard to train people on legacy systems as often there is absence of relevant

knowledge regarding these old systems and new users are not familiar with the old

methodologies and concepts. This makes it hard to maintain them.

• These systems cannot keep up with the rapid adaptation demanded by realities of fast-

paced modern businesses and technology.

The rapid growth of horizontally and vertically integrated supply chains requires integration of

systems both inside and between organizations. The speed of technology changes, coupled with

the growing requirement for intra-organization software collaboration, makes modernization of

software a must for survival. Transformation enables migration to new platforms, and often

includes translation to new programming languages. Evolution is necessary to cope with endless

new software releases and manage hardware and software obsolescence. To succeed, the

methodology used for managing evolution must include component-based software engineering

(CBSE).

It can not be denied that legacy software systems provide valuable functionalities that have been

proven in practice. These legacy systems often embody valuable intellectual assets, representing

 3

successful business practices and procedures. It is in the interest of the enterprise to reuse and

reconvert these intellectual assets and not discard them. This is where retrieving useful

components from the legacy systems can prove to be much more effective than building them

from scratch.

Project Goal

Generate component-based software from object-oriented design using UML class diagrams.

Project Objectives

a. Develop a system recovery tool that converts an object-oriented structural design into

component-based software.

b. Test it on java programming language.

c. Ensure that it can be used for any programming language.

d. Find an optimum method to define relation importance weights to give satisfactory

results.

e. Suggest future modifications to improve the system recovery tool.

Methodology

This system takes UML class diagrams via XMI file as inputs. Analysis class diagrams and set

weight for each edge according to type of relation it represent. Take this weighted graph and

cluster it into highly connected clusters then generate the XMI file so that each cluster represents

a component. Generate fully deployable components using one of the Forward Engineering tools.

With continued acceleration in the speed of change, it will be important to preserve what is

valuable and develop new programs for the evolving business needs. In this context, the

component-based approach is likely to acquire even greater relevance in the future.

 4

Overview

The remainder of this paper is divided into 5 sections. In sections 1, we start by a review of the

relevant and related literature. Section 2 provides a description of various tools and techniques

utilized in this project. Sections 3 briefly describe the project plan and phases and describe in

some details procedures and methodology. A case study is overviewed in section 4. And finally,

conclusion and future work are stated in section 5.

 5

1 Review of Relevant and Related Literature

1.1 Legacy System Renovation

Motivation: The Business Case for Renovation

As mentioned earlier in the introductory section, in today’s business environment, there is a

constant need for updating and renovating business-critical software systems for a variety of

reasons. Some of these reasons are: business requirements change rapidly and frequently,

technological infrastructure is modernized at exponential speeds, changes in government laws.

For these reasons, the fields of reverse engineering and system renovation are becoming

increasing important. The interest in such subjects originates from the difficulties that

organizations encounter when attempting to maintain extremely large software systems

developed in the past. Such software systems are often referred to as “legacy systems,” since

they are a legacy of many different people that have developed and maintained them. It is not

very difficult to see that is very challenging—if not impossible—to maintain them.

Before the actual renovation can start it is necessary to make an inventory of the specification

and the documentation of the system to be renovated. Also at this point there is a challenge for

software engineers since the old systems lack mostly these sources of information. Experience

shows that either there is no documentation at all, or the original programmers that could

possibly explain the functionality of parts of the system have left, or both. The only

documentation that is left is the source code itself. Thus, since the vital information of the

software is solely accessible via the source code it will be necessary to develop tools to facilitate

the renovation--a task for software engineers.

System Re-factoring Techniques

1.1.1 Renovate From Source Code

Most of methodologies in this category include the following typical set of steps: (i) restructuring

the legacy code, (ii) extracting reusable business models corresponding to candidate components,

 6

and (iii) wrapping them into deployable components. And since most of legacy systems were

written in COBOL there was a lot of researches dealing with reengineering COBOL codes as in

 [28] .Errickson-Connor in [11] provides an excellent guide for source code renovation processes

through a four stage process consisting of cleaning, restructuring, transformation, and managing.

In [8] they analyze the legacy code before restructuring rather than cleaning. This approach of

analyzing the legacy code thoroughly before cleaning it appears to be a more efficient. In fact,

the cleaning is part of analyzing processes and can even be automated. As stated by them, there

are several starting points to analyze legacy systems. They include: interviewing users,

maintainers and, if possible, the designers of the legacy system. In addition, we can use

persistent data stores as a starting point and track down the procedures or classes that can be a

candidate of components. Similarly, as done in [23], we can use legacy system features of the

systems along with the regression testing techniques to define fine-grained components. This

technique allows each component to accomplish one feature while not all features have to be

wrapped into a component. Another starting point for the analysis of the legacy systems can be

the system structure or the use cases as described in [3]. They used PERFORM graph and the

dominance relation of the calling structure between procedures to generate dominance tree to

identify reusable components. As we will see later, these tools are more commonly used in the

second category of methodologies which renovate from design.

Following are examples of some system analysis and component mining methods:

1.1.1.1 Design Patterns

This approach seeks to identify instances of Design Patterns based on the idea that they

can be characterized as a group of classes sharing mutual relations. “Object-Oriented

Reengineering Patterns” Book by Demeyer et al describes a number of recurring

solutions that experts apply while reengineering and maintaining object-oriented

systems. The principles and techniques described in this book have been observed and

validated in a number of industrial projects, and reflect best practice in object-oriented

reengineering.

Reverse engineering patterns help to extract models from existing applications and

source code, and reengineering patterns help to identify and resolve problems in legacy

code.

 7

1.1.1.2 System Features Approach:

Using regression testing documentation which is an important resource tell what

features the system accomplish and by using any existing code-profiling tool to trace

the code implementing a certain feature; [23] found three cases were the feature

implementation needs refinement. First case is when a feature implementation spread

among several functions, Second case is a function implements several features, the last

case is a combination of both preceding cases. Matching one of these cases the refactor

the code then create a fine-grained components.

1.1.2 Renovate From Design:

Renovating from design has an advantage that its platform independent, can readily verify dead

codes.

a) Clustering Approaches

1. Divisive Clustering (Top-Down Approach)

Graph clustering analysis [5] [21]processes goes as follow, first abstract the legacy system into

undirected graph, calculate the edge strength which is the core step, then cut all the edge smaller

than some threshold, and at last vary the value of the threshold to test the best gained candidates.

Edge strength was calculated using 3-cycle and 4-cycle edge density.

2. Agglomerative Clustering (Bottom-Up Approach)

In Graph iterative analysis [21] you have to predefine the size of out-coming graph, the size of

sub-graphs to experiment, and the independency threshold then iteratively apply the

independence metrics to identify the most independence sub-graphs until the number of clusters

meets the predetermined size of graph.

The independency metric is calculated using this equation [IM = cohesion/ (coupling*subgraph

size)]. Where cohesion is the sum of weights of inner relations, within the subgraph, coupling is

sum of outer relations and the size is determined by the number of sub-graph’s vertices.

Component Identification Method with coupling and cohesion [19]:

 8

Highly demands on well formed architecture that is divided into well defined subsystems.

In their methodology to identify components, they first identify the core classes and then use

agglomerative clustering for each core class group the subsidiary class that relate to the core

class by a relation with a weight beyond the threshold value, the relation weight is calculated as

the multiplicity of cohesion* interaction coupling* static coupling.

 [15]While in Obtain from object oriented analysis phase the structural view from UML class

diagrams. And all of use case diagrams and sequence diagrams to represent the dynamic view.

Calculate the relation strength which is equal to the relative importance of static weight * static

weight + relative importance of Static weight * Dynamic weight, where the summation of the

both importance weight must equals exactly one. Then binary merges cluster is iteratively done

until reach a cut-off depending on a predefined threshold to identify the components candidates

also a further refinement are done to maintains high cohesion within a component and low

coupling between components some examples of these refinement is retain inherited class and

it’s parents in the same component to keep low coupling. The user also can add, move, exchange

or delete some of the component classes.

Two stages approach provided in [18] to generate the components from the Legacy source code

first stage is to create basic components and then refine components. First stage is accomplish in

four steps, group classes related to each other by a composition relationship into a component,

followed by cleaning the unused classes, After that create a component that groups the

hierarchical related classes if the parent class is abstract add a copy of it to the component in the

other hand if parent class was concrete move it to the component at last clean unused classes

again. Second stage use agglomerative clustering starting with basic components and considering

other classes as components then gradually group these components into a bigger component

based on coupling and cohesion metrics and using the component complexity threshold to

manage the granularity of the created components.

1.2 Unified Modeling Language (UML)

 “Unified Modeling language is an industry standard language for specifying, visualization,

constructing, and documenting the artifacts of software systems standardized by the”.

 9

One way to use UML is as blueprint which is a relatively detailed design diagram used in reverse

and forward engineering.

Why Use UML

UML is mainly used due to three main reasons:

1. UML is independent from programming languages and development process.

2. Supports component methodology.

3. Provides an XML based interchange language which is XMI.

UML Diagrams

Currently many of UML tools support all thirteen diagrams provided by UML, and are classified

into three categories; first category includes six structural diagrams known as static diagrams;

second category includes three behavioral diagrams known as dynamic diagrams, and the third

category includes four interaction diagrams.

In this project we will consider only class diagrams and component diagrams from the structural

view.

Structural diagrams

Class diagram

UML class diagram is a “Pictorial representation of a detailed system design” [36] consisting of

classes, interfaces, and relations among them. It represents a “static view” of the system.

Relations are of different types, associations, aggregation, generalization and dependencies.

Component diagram

UML Component diagram shows system components and the dependencies between them.

Xml Meta-model Interchange (XMI)

XMI is an OMG standard for exchanging metadata information via XML. The most common use

of XMI is as an Interchanging format for UML models. It is supported by almost all UML tools,

the most popular versions are 1.0, 1.2, 2.0, and now 2.1 was released. Since versions less than

 10

2.0 don’t support visualization of diagrams and because we are using version 1.2 we can’t

represent the generated component diagram. We use version 1.2 and not a newer version because

currently most of the forward engineering tools support version 1.2.

1.3 Design Metrics

Design Metrics provide measurement of several aspects of quality of design properties. With

component development, metrics help us to measure the cohesive within a component’s

constituents, coupling between components, and the granularity of components.

Coupling

Since the coupling is a measure of how strongly a component is connected to, has knowledge of,

or relies on other components, the aim is to maintain the coupling as low as possible, but because

the “components are for composition” [38] we can not eliminate coupling between classes.

Despite this fact, high coupling to stable or preservative elements is acceptable. Benefits of Low

Coupling are:

a. Increase reusability.

b. Increase maintainability.

c. Increase understandability.

Cohesion

A measure of how strongly related and focused the responsibilities of component’s constituent

are [25] i.e. component should implement a single function or a highly related functions.

Very Low Cohesion

Component constituents are responsible for many things in many different functional areas.

Low Cohesion

Component is very complex and hard to manage even thought it serves one functional area.

 11

High Cohesion

Component has moderate complexity, serves one functional area, but depends on other

components.

Moderate Cohesion

Component has sole responsibilities in a few different areas that are logically highly related to

each other. Going down the level of cohesion is enhanced.

Complexity

Class diagram complexity measures the degree of connectivity between elements of a design unit

and can be measured by measuring the complexity of both classes and relations composing the

diagram.

Class Complexity

Many factors should be considered while measuring class complexity such as class size,

Inheritance, the number of public operators and attributes [16], and the number of method

invocations among the methods within the classes.

Relations complexity

Not only different kinds of relations have different degrees of complexity even different types of

each kind have different degrees of complexity.

1.4 Reverse Engineering

Reverse engineering has it origins in hardware technology and denotes the process of obtaining

the specification of complex hardware systems. And in Software has been defined as “The

process of analyzing software with the objective of recovering its design and specification” [37].

Often, over time, the design documentations are lost. Even if exist, they are not updated during

the process of updating or maintenance of the original software system. Hence, they do not

reveal the actual current design. Reverse engineering is used to recapture the high level design of

the system. In our approach we used reverse engineering to obtain the system structure via UML

 12

class diagrams of the current updated system that will be renovated. Reverse engineering restricts

itself to investigating a system without any adaptations or modifications.

1.5 Clustering Technique

Clustering is the process of grouping some related data according to similarity of measurements.

In our context similarity is represented by the level of dependency between classes.

Partitional Clustering

Considers dataset as a whole cluster and divide into non-overlapping clusters. In partitional

clustering a number of clusters to be produced or size of clusters must be predefined. And

usually the cluster’s elements are chosen arbitrarily. One of the famous partitional clustering is

K-means clustering.

Hierarchical Clustering

Hierarchical Clustering provides a set of nested clusters that are organized as a tree.

Agglomerative Clustering (Bottom-Up)

Starts with each element as a cluster and iteratively do a successful merges into a larger clusters.

Min-Max cut: The Min-Max cut main principle is the association between two sub-graphs is

minimized, while association within each sub-graph is maximized [10].

Divisive Clustering (Top-Down)

Treats all dataset as a whole cluster and repeatedly break them into smaller clusters.

Average Similarity: The average similarity within a cluster must be maximized and minimized

between clusters.

 13

1.6 Forward Engineering

As defined in [37] “Forward Engineering is the set of engineering activities that consume the

products and artifacts derived from legacy software and new requirements to produce a new

target system”.

Generating code in forward engineering process can be done in several ways, one way is model

driven Architecture (MDA) based forward engineering which uses templates mostly written in

Velocity scripting language to generate the code. Other way is to use design patterns.

1.7 System Reengineering

System Reengineering is the examination and alteration of an existing subject system to

reconstitute in a new form. This process encompasses a combination of sub-processes such as

reverse engineering, restructuring, re-documentation, forward engineering, and retargeting.

 14

2 Tools

To accomplish this work we utilized some tools.

SDMetrics

SDMetrics is a stand alone tool that measures the structural properties of UML designs using

object-oriented measurement of size, complexity, coupling, and cohesion. It provide a statistical

analysis of the design that can exported as an excel spreadsheet.

Java Universal Network / Graph (JUNG)

JUNG framework is a free open source library written in java to manipulate, visualize, and

analyze graphs and networks data. This library has many useful features; it supports many kinds

of graphs including directed graph which is needed in this project, it provide a mechanism to

attach metadata for the graph, nodes, and relations as labels and weights. Moreover, it supports

some of the graph methodologies including filtering, decomposition, statistical analysis, and

clustering such as Edge betweenness clustering. And the most important thing is the capability of

importing and exporting graphML, an XML based file describes a graph, that facilitate the

mission of generating the new components-based XMI file using a style sheet that converts the

original file XMI based on the rules of the graphML.

ArgoUML

ArgoUML is a free UML design open source tool. In this project we used ArgoUML-

0.20.BETA_2 that can reverse engineer a java codes and generate XMI1.2 file. At the beginning

a plan to plug this tool into our system was in mind, but due to the long time the reverse

engineering process takes which may extend to several hours or may not be accomplished at all.

This will affect the efficiency of the system, so we will leave the user to use his discretion in

deciding to use any UML tool that support generating XMI version 1.2. Moreover they use a

simple code generation rather than full forward engineering.

 15

Stylus Studio

Stylus Studio is a commercial XML tool. I used “XSLT Mapper” to write the style sheet

mentioned earlier.

Sourceforge

It considered as one of the largest open source libraries I benefit from this site in taking the test

cases java codes from there also to seek for an appropriate reverse engineering tool, since it has a

lot of these tools with variety of specifications. All what you have to do is search for “XMI”

 16

3 Methodology

The following diagram depicts the methodology graphically. It is followed by a description of

individual phases.

Generate a

Graph

Read &
Analyze XMI
Document

Forward

Engineering

Cluster the

Graph
 Generate new

XMI
Document

Reverse
Engineering

Generate
GraphML file

Figure 1: Project Phases

 17

Project Phases

3.1 Reverse Engineering

Generate UML Models from Java codes and then exports XMI file by using any UML tools that

support exporting XMI v.1.2, This System is tested through ArgoUML and most of the UML

tools can accomplish this task.

3.2 Read and Analyze XMI file

Read class diagram’s design elements and relations from XMI file, UML design elements are

classes, interfaces, components, and packages which consist of combination of previous

elements. Classes, interfaces, components, and the contents of packages are read. You will ask

why the contents of the packages and not the packages themselves?? And this is to obtain more

cohered clusters sense you cannot confirm that a package doesn’t consists of any loosely coupled

elements. Relations were also read and then coupling and complexity metrics values were

extracted.

Weights Calculations

Assigning weights for several kinds of relations so that each kind of relation has a strength

weight associated to it. But not all the edges representing a relation from the same kind has the

same weight because we take into account the complexity of the supplier and/or client design

element.

Relations Types

As stated in [16] they sorted relations according to its dependency weight importance. Also they

stated that dependency relation is the most common relation

Complexity

Complexity of a design model is calculated using the in/out degree of node i.e. number of

relations where the node is the client or supplier.

 18

Coupling

We can classify coupling metrics depending on their domain into:

 Domain: Class

a. Export Coupling for Attributes (EC_Attr): The number of times the class is externally

used as attribute type. This is the number of attributes in other classes that have this

class as their type.

b. Import Coupling for Attributes (IC_Attr): The number of attributes in the class having

another class or interface as their type.

c. Export Coupling for Parameters (EC_Par): The number of times the class is externally

used as parameter type. This is the number of parameters defined outside this class that

have this class as their type.

d. Import Coupling for Parameters (IC_Par): The number of parameters in the class

having another class or interface as their type.

Domain: Interface

a. Export Coupling for Attributes (EC_Attr): The number of times the interface is used as

attribute type.

b. Export Coupling for Parameters (EC_Par): The number of times the interface is used as

parameter type.

c. Import Coupling for Parameters (IC_Par): The number of parameters in the interface

having an interface or class as their type

 19

DC1 RELATION SYMBOL WCDG

SYMBOL

DWV OF RELATION

[1] Dependency

DW = DC * C(Supplier)

C() = complexity of the class

Association

 DW1 = DC * C(Student) * C(College)

n, m = max destination multiplicity,

if n =0 let 1/n =0

[2]

Directed Association

DW = DC * C(Student)

1 DC = Degree of Complexity.

Student

College

Supplier

Source

Source Supplier

Student

College

 20

DC1 RELATION SYMBOL WCDG DWV OF RELATION

SYMBOL

 Association Class

 DW1 = DC * C(Employment) * C(Person) *

C(Company)

n = 1, if edge starting from Association class.

Company Person

Employment

Comp.

Person

[3] Aggregation

 DW1 = DC * C(Whole) * C(Part)
Whole Part Whole

Part

[4] Composition

 DW1 = DC * C(Whole) C(Part)

Whole Part Whole

Part

 21

DC1 RELATION SYMBOL WCDG DWV OF RELATION

SYMBOL

[5] Binding

DW = DC * C(Student)

[6] Inheritance/

Generalization

 [1]

DW1 = DC * C(Language) * C(Java) *

C(C++)

[7] Realization

DW = DC * C(Parser)

Table 1: Dependency Weigh Value Equations

Student

College

StudentCollege
ID

Language

C++ Java

Parser

HTML Parser

 22

3.3 Create Weighted Directed Graph

Generate a Graph such that each vertex represents a design element and each edge

represents the relationship between those elements. And the weight of edge is calculated

as illustrated in Table 1:

Figure 2: Directed Weighted Graph

3.4 Cluster the Graph

Using Hierarchical divisive clustering methodology and a Threshold placed by the user

the weak edges are temporarily removed to generate clusters and replace them again.

 23

Figure 3: Clustered Graph

3.5 Generate GraphML file

Generate a temporary graphML file, and because it is an xml based format we extended it

to meets our needs, following is the schema of the modified graphML.

<?xml version="1.0" encoding="UTF-8"? >

<xs:schema xmlns:xs= "http://www.w3.org/2001/XMLSchema"

elementFormDefault= "qualified"

targetNamespace= "http://graphml.graphdrawing.org/xmlns/graphml"

xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"

xmlns:graphml= "http://graphml.graphdrawing.org/xmlns/graphml" >

 <xs:import namespace= "http://www.w3.org/2001/XMLSchema-

instance" schemaLocation= "xsi.xsd" / >

 <xs:element name="graphml" >

 <xs:complexType >

 <xs:sequence >

 <xs:element ref= "graphml:graph" / >

 24

 </xs:sequence >

 <xs:attribute ref= "xsi:schemaLocation" use= "required" / >

 </xs:complexType >

 </xs:element >

 <xs:element name="graph" >

 <xs:complexType >

 <xs:sequence >

 <xs:element ref= "graphml:clusters" / >

 <xs:element ref= "graphml:edges" / >

 </xs:sequence >

 <xs:attribute name="Clustering_Weight_Key" use= "required" / >

 <xs:attribute name="Edge_Weight_Key" use= "required" / >

 <xs:attribute name="StringLabeller.LabelDefaultKey"

use= "required" / >

 <xs:attribute name="edgedefault" use= "required"

type= "xs:NCName" / >

 </xs:complexType >

 </xs:element >

 <xs:element name="clusters" >

 <xs:complexType >

 <xs:sequence >

 <xs:element maxOccurs= "unbounded" ref= "graphml:cluster" / >

 </xs:sequence >

 </xs:complexType >

 </xs:element >

 <xs:element name="cluster" >

 <xs:complexType >

 <xs:sequence >

 <xs:element maxOccurs= "unbounded" ref= "graphml:node" / >

 </xs:sequence >

 <xs:attribute name="id" use= "required" type= "xs:integer" / >

 <xs:attribute name="name" use= "required" type= "xs:NCName" / >

 </xs:complexType >

 </xs:element >

 25

 <xs:element name="node" >

 <xs:complexType >

 <xs:attribute name="id" use= "required" type= "xs:integer" / >

 <xs:attribute name="name" use= "required" type= "xs:NCName" / >

 <xs:attribute name="xmi.id" use= "required"

type= "xs:NMTOKEN" / >

 </xs:complexType >

 </xs:element >

 <xs:element name="edges" >

 <xs:complexType >

 <xs:sequence >

 <xs:element maxOccurs= "unbounded" ref= "graphml:edge" / >

 </xs:sequence >

 </xs:complexType >

 </xs:element >

 <xs:element name="edge" >

 <xs:complexType >

 <xs:attribute name="RelType" use= "required"

type= "xs:NCName" / >

 <xs:attribute name="directed" use= "required"

type= "xs:boolean" / >

 <xs:attribute name="edge_weight" use= "required"

type= "xs:decimal" / >

 <xs:attribute name="isRemoved" use= "required"

type= "xs:NCName" / >

 <xs:attribute name="source" use= "required"

type= "xs:integer" / >

 <xs:attribute name="target" use= "required"

type= "xs:integer" / >

 </xs:complexType >

 </xs:element >

</xs:schema >

Figure 4: GraphML Schema

 26

3.6 Transfer GraphML to XMI file

Transform original XMI file into a new XMI based on GraphML file according to the

following algorithm:

<?xml version='1.0' ? >

<xsl:stylesheet version= "1.0"

xmlns:xsl= "http://www.w3.org/1999/XSL/Transform"

 xmlns:UML= "org.omg.xmi.namespace.UML"

xmlns:a= "http://graphml.graphdrawing.org/xmlns/graphml" >

 <xsl:output method= "xml" / >

 <xsl:template match= "/" >

 <xsl:copy >

 <xsl:copy-of select= "@*" / >

 <xsl:apply-templates/ >

 </xsl:copy >

 </xsl:template >

 <xsl:template match= "*" >

 <xsl:copy >

 <xsl:copy-of select= "@*" / >

 <xsl:apply-templates/ >

 </xsl:copy >

 </xsl:template >

 <xsl:template match= "UML:Namespace.ownedElement[local-

name(parent::*[1]) = 'Model']" >

 <xsl:copy >

 <xsl:call-template name="graphml" / >

 <xsl:copy-of select= "@*" / >

 <xsl:apply-templates/ >

 </xsl:copy >

 </xsl:template >

 27

 <xsl:template name="graphml" >

 <xsl:for-each select= "//a:graphml/.//a:cluster" >

 <xsl:choose >

 <xsl:when test= "count(child::*) > 1" >

 <xsl:variable name="cOne"

select= "child::*[1]/@name" / >

 <xsl:variable name="cTwo"

select= "child::*[2]/@name" / >

 <xsl:if test= "not((count(child::*) = '2')

and ((contains($cOne, '.java') and contains($cOne, $cTwo)) or

(contains($cTwo, '.java') and contains($cTwo, $cOne))))" >

 <xsl:element name="UML:Component" >

 <xsl:attribute name="xmi.id" >

 <xsl:text >.:000 </xsl:text >

 <xsl:value-of

select= "@id" / >

 </xsl:attribute >

 <xsl:attribute

name="isSpecification" >false </xsl:attribute >

 <xsl:attribute

name="isRoot" >false </xsl:attribute >

 <xsl:attribute

name="isLeaf" >false </xsl:attribute >

 <xsl:attribute

name="isAbstract" >false </xsl:attribute >

 <xsl:copy-of select= "@name"/ >

 <xsl:element

name="UML:ModelElement.clientDependency" >

 <xsl:for-each

select= "a:node" >

 <xsl:element

name="UML:Dependency" >

 <xsl:attribute

name="xmi.idref" >

 28

 <xsl:value-of select= "@xmi.id" / >

 </xsl:attribute >

 <xsl:apply-

templates/ >

 </xsl:element >

 </xsl:for-each >

 </xsl:element >

 </xsl:element >

 </xsl:if >

 </xsl:when >

 </xsl:choose >

 </xsl:for-each >

 </xsl:template >

 <xsl:template match= "*[*/UML:Package/@xmi.idref]" / >

 <xsl:template match= "UML:Package[not(@xmi.idref)]" >

 <xsl:apply-templates

select= "UML:Namespace.ownedElement/child::node()" / >

 </xsl:template >

 <xsl:template match= "a:graphml" / >

</xsl:stylesheet >

Figure 5: XSLT - GraphML2XMI.xsl

3.7 Forward Engineering

Using proper forward engineering tool generate type of components needed, like COM or

EJB, here we test our project using Sparx – Enterprise Architect to generate EJBs.

 29

4 System Design

4.1 Class Diagram Level # 0:

Figure 6: Class Diagram Level # 0

 30

4.2 Input/Output Package

4.2.1 Isolated IO Package:

Figure 7: Input / Output Package

4.2.1.1 Open Class

File chooser dialog to import source XMI file.

4.2.1.2 Save Class

File chooser dialog to export result XMI file, which consists of the generated
components.

 31

4.3 XMI2GraphML Package

4.3.1 Isolated XMI2GraphML

Figure 8: XMI 2 GraphML Package

 32

4.3.2 XMI2GraphML Dependencies

Figure 9: XMI 2 GraphML Pack age Dependencies Level # 0

 33

4.3.3 XMI2GraphML

Figure 10: XMI 2 GraphML Pack age Dependencies Level # 1

 34

4.3.3.1 Transform Class

Check the correctness of the input file and generate a normalized document that can be

parsed.

4.3.3.2 Read XMI Class

Extract design elements and relations from XMI file and call vertices class, relation class,

and coupling class respectively to build a directed weighted graph

4.3.3.3 Vertices Class

Each design element will be represented as a vertex labeled by the corresponding design

element name.

4.3.3.4 Relation Class

Each kind of relation will be represented as a directed edge, refer to Table 1, the weight

of the edge will be calculated in two stages. First, set the importance weight as the edge

weight, if multiple relations with the same direction exist, set the summation of their

weights. In second stage, multiply this weight with the complexity weight as illustrated in

Table 1.

4.3.3.5 Coupling Class

Extract coupling between design elements, and using relation class to create an edge if

not exist and the weight equal to total number of coupling * importance weight of

coupling.

4.3.3.6 GraphML File Class

A JUNG library class, we edit it to obtain graphML schema we need.

4.3.3.7 GraphML File Handler Class

A JUNG library class that is used by GraphML File Class.

 35

4.4 CLUSTER Package

4.4.1 Isolated CLUSTER

Figure 11: Cluster Package

4.4.2 CLUSTER Dependencies

Figure 12: Cluster Package Dependencies Level # 0

 36

4.4.3 CLUSTER

Figure 13: Cluster Package Dependencies Level # 1

4.4.3.1 Edge Weight Cluster Class

Begin with the whole graph as a cluster after specifying a threshold, edges bellow this

threshold will be progressively removed and clusters will be generated.

 37

4.5 Graphical User Interface Package

4.5.1 Isolated GUI

Figure 14: Graphical User Interface Package

 38

4.5.2 GUI Package Dependency

Figure 15: GUI Package Dependencies Level # 0

 39

4.5.3 GUI Connections

Figure 16: GUI Package Dependencies Level # 1

 40

4.5.3.1 Cluster Class

Main GUI represents the graph, set threshold using slider, represent the cluster graph, and

call Manage Components Class preparing to export the new XMI file.

4.5.3.2 Manage Components Class

Dual list manager GUI to name each component and manage them contents.

4.5.3.3 Main Class

Main class is used to launch this tool.

 41

4.6 Overall Class Diagram

Figure 17: Overall Class Diagram

 42

5 Case Study

I arbitrarily choose an open source Forum Software to analyze its transformation in the

case study.

Figure 18: Window#1 – Graph Representation

Total Number of Nodes = 52

Total Number of Edges = 85

DESIGN

ELEMENT

TYPE

CLASS INTERFACE COMPONENTS TOTAL

Quantity 39 3 10 52

Internal Design Attribute Parameters

Quantity 95 226

Table 2: Analytic of Design Elements

 43

RELATION TYPE QUANTITY

Generalization 1

Abstraction 0

Association 0

Association class 0

Dependency 11

Permission 47

Import / Export Coupling Attribute 41

Import / Export Coupling Parameter 99

Total Relations 199

Parallel Edges 114

Total Edges 85

Table 3: Analytic of Relations

Generated GraphML:

<?xml version="1.0" encoding="UTF-8"? >

<graphML xmlns= "http://graphml.graphdrawing.org/xmlns/graphml"

xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation= "http://graphml.graphdrawing.org/xmlns/graphml

file:///C:/Documents%20and%20Settings/Hind/Desktop/GraphMLSchema.

xsd" >

 <graph edgedefault= "directed"

Edge_Weight_Key= "edu.uci.ics.jung.graph.decorators.EdgeWeightLabe

ller@10bbf9e"

Clustering_Weight_Key= "edu.uci.ics.jung.graph.decorators.EdgeWeig

htLabeller@513d61"

IndexDefaultKey= "edu.uci.ics.jung.graph.decorators.Indexer@19bfb3

0"

StringLabeller.LabelDefaultKey= "edu.uci.ics.jung.graph.decorators

.StringLabeller@194d372" >

 44

 <clusters >

 <cluster id= "1" >

 <node id= "21" xmi.id= ".:0000000000000890"

name="Date" / >

 </cluster >

 <cluster id= "2" >

 <node id= "41" xmi.id= ".:0000000000000898"

name="Hashtable" / >

 </cluster >

 <cluster id= "3" >

 <node id= "9" xmi.id= ".:000000000000080E"

name="SubscriberNotification" / >

 <node id= "48" xmi.id= ".:000000000000080D"

name="SubscriberNotification.java" / >

 </cluster >

 <cluster id= "4" >

 <node id= "30" xmi.id= ".:0000000000000862"

name="FileInputStream" / >

 </cluster >

 <cluster id= "5" >

 <node id= "22" xmi.id= ".:000000000000088B"

name="Timestamp" / >

 </cluster >

 <cluster id= "6" >

 <node id= "42" xmi.id= ".:0000000000000FAD"

name="BufferedReader" / >

 </cluster >

 <cluster id= "7" >

 <node id= "51" xmi.id= ".:00000000000008AB"

name="Transformer" / >

 </cluster >

 <cluster id= "8" >

 <node id= "39" xmi.id= ".:000000000000083C"

name="SmileyManager.java" / >

 45

 <node id= "8" xmi.id= ".:000000000000083D"

name="SmileyManager" / >

 </cluster >

 <cluster id= "9" >

 <node id= "29" xmi.id= ".:0000000000000FBD"

name="StringTokenizer" / >

 </cluster >

 <cluster id= "10" >

 <node id= "44" xmi.id= ".:00000000000008B7"

name="TransformerFactory" / >

 </cluster >

 <cluster id= "11" >

 <node id= "50" xmi.id= ".:000000000000087E"

name="StringWriter" / >

 </cluster >

 <cluster id= "12" >

 <node id= "10" xmi.id= ".:0000000000000876"

name="StringBufferInputStream" / >

 </cluster >

 <cluster id= "13" >

 <node id= "28" xmi.id= ".:000000000000089C"

name="Map" / >

 </cluster >

 <cluster id= "14" >

 <node id= "47" xmi.id= ".:000000000000086A"

name="IOException" / >

 </cluster >

 <cluster id= "15" >

 <node id= "7" xmi.id= ".:0000000000000F0D"

name="Enumeration" / >

 </cluster >

 <cluster id= "16" >

 <node id= "1" xmi.id= ".:00000000000008C0"

name="StreamSource" / >

 46

 </cluster >

 <cluster id= "17" >

 <node id= "40" xmi.id= ".:000000000000084D"

name="UIDGenerator.java" / >

 <node id= "43" xmi.id= ".:000000000000084E"

name="UIDGenerator" / >

 </cluster >

 <cluster id= "18" >

 <node id= "19" xmi.id= ".:00000000000008AF"

name="TransformerConfigurationException" / >

 </cluster >

 <cluster id= "19" >

 <node id= "33" xmi.id= ".:0000000000000872"

name="OutputStream" / >

 </cluster >

 <cluster id= "20" >

 <node id= "32" xmi.id= ".:00000000000007F8"

name="Error" / >

 <node id= "5" xmi.id= ".:00000000000007F7"

name="Error.java" / >

 </cluster >

 <cluster id= "21" >

 <node id= "26" xmi.id= ".:0000000000000866"

name="FileNotFoundException" / >

 </cluster >

 <cluster id= "22" >

 <node id= "50" xmi.id= ".:000000000000087E"

name="StringWriter" / >

 </cluster >

 <cluster id= "23" >

 <node id= "35" xmi.id= ".:0000000000000882"

name="UnsupportedEncodingException" / >

 </cluster >

 <cluster id= "24" >

 47

 <node id= "12" xmi.id= ".:000000000000087A"

name="StringReader" / >

 </cluster >

 <cluster id= "25" >

 <node id= "25" xmi.id= ".:0000000000000FB7"

name="InputStreamReader" / >

 </cluster >

 <cluster id= "26" >

 <node id= "4" xmi.id= ".:000000000000085B"

name="File" / >

 </cluster >

 <cluster id= "27" >

 <node id= "15" xmi.id= ".:0000000000000843"

name="Smiley" / >

 </cluster >

 <cluster id= "28" >

 <node id= "37" xmi.id= ".:00000000000008A0"

name="Properties" / >

 </cluster >

 <cluster id= "29" >

 <node id= "24" xmi.id= ".:00000000000007EB"

name="ConnexionInfo.java" / >

 <node id= "45" xmi.id= ".:00000000000007EC"

name="ConnexionInfo" / >

 </cluster >

 <cluster id= "30" >

 <node id= "2" xmi.id= ".:00000000000008A4"

name="Vector" / >

 <node id= "14" xmi.id= ".:000000000000081A"

name="MailServices" / >

 <node id= "3" xmi.id= ".:0000000000000818"

name="MailServices.java" / >

 </cluster >

 <cluster id= "31" >

 48

 <node id= "16" xmi.id= ".:0000000000000887"

name="SQLException" / >

 </cluster >

 <cluster id= "32" >

 <node id= "38" xmi.id= ".:0000000000000894"

name="HashMap" / >

 </cluster >

 <cluster id= "33" >

 <node id= "27" xmi.id= ".:00000000000008BC"

name="StreamResult" / >

 </cluster >

 <cluster id= "34" >

 <node id= "34" xmi.id= ".:00000000000008B3"

name="TransformerException" / >

 </cluster >

 <cluster id= "35" >

 <node id= "51" xmi.id= ".:00000000000008AB"

name="Transformer" / >

 </cluster >

 <cluster id= "36" >

 <node id= "13" xmi.id= ".:000000000000082F"

name="MimeTable.java" / >

 <node id= "46" xmi.id= ".:000000000000086E"

name="InputStream" / >

 <node id= "31" xmi.id= ".:00000000000007CD"

name="CForum.java" / >

 <node id= "23" xmi.id= ".:0000000000000C0F"

name="Exception" / >

 <node id= "20" xmi.id= ".:0000000000000803"

name="ResearchParameters" / >

 <node id= "36" xmi.id= ".:0000000000000831"

name="MimeTable" / >

 <node id= "17" xmi.id= ".:0000000000000802"

name="ResearchParameters.java" / >

 49

 <node id= "18" xmi.id= ".:00000000000007D7"

name="CForum" / >

 <node id= "52" xmi.id= ".:00000000000008F1"

name="String" / >

 <node id= "11" xmi.id= ".:00000000000008CE"

name="ContentHandler" / >

 </cluster >

 <cluster id= "37" >

 <node id= "49" xmi.id= ".:0000000000000825"

name="SendMessageException" / >

 <node id= "6" xmi.id= ".:0000000000000824"

name="SendMessageException.java" / >

 </cluster >

 </clusters >

 <edges >

 <edge source= "24" target= "21" directed= "true"

RelType= "Dependency" edge_weight= "2.0" isRemoved= "True" / >

 <edge source= "31" target= "50" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "14" target= "2" directed= "true"

RelType= "Coupling" edge_weight= "200.0" isRemoved= "False" / >

 <edge source= "18" target= "52" directed= "true"

RelType= "Coupling" edge_weight= "780.0" isRemoved= "False" / >

 <edge source= "18" target= "23" directed= "true"

RelType= "Coupling" edge_weight= "2640.0" isRemoved= "False" / >

 <edge source= "40" target= "21" directed= "true"

RelType= "Dependency" edge_weight= "2.0" isRemoved= "True" / >

 <edge source= "18" target= "28" directed= "true"

RelType= "Coupling" edge_weight= "60.0" isRemoved= "True" / >

 <edge source= "24" target= "45" directed= "true"

RelType= "Dependency" edge_weight= "2641.0" isRemoved= "False" / >

 <edge source= "13" target= "38" directed= "true"

RelType= "Dependency" edge_weight= "8.0" isRemoved= "True" / >

 50

 <edge source= "48" target= "14" directed= "true"

RelType= "Dependency" edge_weight= "6.0" isRemoved= "True" / >

 <edge source= "18" target= "2" directed= "true"

RelType= "Coupling" edge_weight= "120.0" isRemoved= "True" / >

 <edge source= "32" target= "52" directed= "true"

RelType= "Coupling" edge_weight= "20.0" isRemoved= "True" / >

 <edge source= "48" target= "2" directed= "true"

RelType= "Dependency" edge_weight= "6.0" isRemoved= "True" / >

 <edge source= "31" target= "16" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "13" target= "4" directed= "true"

RelType= "Dependency" edge_weight= "8.0" isRemoved= "True" / >

 <edge source= "31" target= "11" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "18" target= "36" directed= "true"

RelType= "Coupling" edge_weight= "60.0" isRemoved= "True" / >

 <edge source= "13" target= "36" directed= "true"

RelType= "Dependency" edge_weight= "2641.0" isRemoved= "False" / >

 <edge source= "3" target= "7" directed= "true"

RelType= "Dependency" edge_weight= "5.0" isRemoved= "True" / >

 <edge source= "20" target= "52" directed= "true"

RelType= "Coupling" edge_weight= "15.0" isRemoved= "True" / >

 <edge source= "14" target= "52" directed= "true"

RelType= "Coupling" edge_weight= "125.0" isRemoved= "True" / >

 <edge source= "39" target= "8" directed= "true"

RelType= "Dependency" edge_weight= "2641.0" isRemoved= "False" / >

 <edge source= "36" target= "38" directed= "true"

RelType= "Coupling" edge_weight= "25.0" isRemoved= "True" / >

 <edge source= "31" target= "36" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "15" target= "52" directed= "true"

RelType= "Coupling" edge_weight= "40.0" isRemoved= "True" / >

 <edge source= "9" target= "2" directed= "true"

RelType= "Coupling" edge_weight= "15.0" isRemoved= "True" / >

 51

 <edge source= "13" target= "30" directed= "true"

RelType= "Dependency" edge_weight= "8.0" isRemoved= "True" / >

 <edge source= "31" target= "22" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "31" target= "44" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "31" target= "26" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "13" target= "29" directed= "true"

RelType= "Dependency" edge_weight= "8.0" isRemoved= "True" / >

 <edge source= "36" target= "52" directed= "true"

RelType= "Coupling" edge_weight= "525.0" isRemoved= "False" / >

 <edge source= "48" target= "47" directed= "true"

RelType= "Dependency" edge_weight= "6.0" isRemoved= "True" / >

 <edge source= "31" target= "41" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "31" target= "51" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "13" target= "42" directed= "true"

RelType= "Dependency" edge_weight= "8.0" isRemoved= "True" / >

 <edge source= "18" target= "8" directed= "true"

RelType= "Coupling" edge_weight= "60.0" isRemoved= "True" / >

 <edge source= "31" target= "46" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "31" target= "47" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "8" target= "2" directed= "true"

RelType= "Coupling" edge_weight= "25.0" isRemoved= "True" / >

 <edge source= "31" target= "18" directed= "true"

RelType= "Dependency" edge_weight= "2641.0" isRemoved= "False" / >

 <edge source= "3" target= "2" directed= "true"

RelType= "Dependency" edge_weight= "5.0" isRemoved= "True" / >

 <edge source= "31" target= "30" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 52

 <edge source= "17" target= "20" directed= "true"

RelType= "Dependency" edge_weight= "2641.0" isRemoved= "False" / >

 <edge source= "31" target= "34" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "48" target= "37" directed= "true"

RelType= "Dependency" edge_weight= "6.0" isRemoved= "True" / >

 <edge source= "31" target= "2" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "31" target= "35" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "3" target= "37" directed= "true"

RelType= "Dependency" edge_weight= "5.0" isRemoved= "True" / >

 <edge source= "5" target= "32" directed= "true"

RelType= "Dependency" edge_weight= "2641.0" isRemoved= "False" / >

 <edge source= "3" target= "4" directed= "true"

RelType= "Dependency" edge_weight= "5.0" isRemoved= "True" / >

 <edge source= "18" target= "20" directed= "true"

RelType= "Coupling" edge_weight= "180.0" isRemoved= "False" / >

 <edge source= "6" target= "49" directed= "true"

RelType= "Dependency" edge_weight= "2641.0" isRemoved= "False" / >

 <edge source= "31" target= "1" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "31" target= "28" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "18" target= "33" directed= "true"

RelType= "Coupling" edge_weight= "60.0" isRemoved= "True" / >

 <edge source= "40" target= "43" directed= "true"

RelType= "Dependency" edge_weight= "2641.0" isRemoved= "False" / >

 <edge source= "13" target= "25" directed= "true"

RelType= "Dependency" edge_weight= "8.0" isRemoved= "True" / >

 <edge source= "31" target= "33" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "31" target= "12" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 53

 <edge source= "31" target= "8" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "31" target= "27" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "31" target= "43" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "18" target= "11" directed= "true"

RelType= "Coupling" edge_weight= "780.0" isRemoved= "False" / >

 <edge source= "9" target= "52" directed= "true"

RelType= "Coupling" edge_weight= "60.0" isRemoved= "True" / >

 <edge source= "31" target= "10" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "31" target= "37" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "31" target= "21" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "31" target= "4" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "49" target= "52" directed= "true"

RelType= "Coupling" edge_weight= "30.0" isRemoved= "True" / >

 <edge source= "48" target= "46" directed= "true"

RelType= "Dependency" edge_weight= "6.0" isRemoved= "True" / >

 <edge source= "45" target= "52" directed= "true"

RelType= "Coupling" edge_weight= "45.0" isRemoved= "True" / >

 <edge source= "43" target= "52" directed= "true"

RelType= "Coupling" edge_weight= "15.0" isRemoved= "True" / >

 <edge source= "31" target= "19" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "8" target= "52" directed= "true"

RelType= "Coupling" edge_weight= "25.0" isRemoved= "True" / >

 <edge source= "3" target= "14" directed= "true"

RelType= "Dependency" edge_weight= "2641.0" isRemoved= "False" / >

 <edge source= "48" target= "9" directed= "true"

RelType= "Dependency" edge_weight= "2641.0" isRemoved= "False" / >

 54

 <edge source= "39" target= "2" directed= "true"

RelType= "Dependency" edge_weight= "3.0" isRemoved= "True" / >

 <edge source= "13" target= "47" directed= "true"

RelType= "Dependency" edge_weight= "8.0" isRemoved= "True" / >

 <edge source= "14" target= "4" directed= "true"

RelType= "Coupling" edge_weight= "25.0" isRemoved= "True" / >

 <edge source= "18" target= "46" directed= "true"

RelType= "Coupling" edge_weight= "180.0" isRemoved= "False" / >

 <edge source= "18" target= "45" directed= "true"

RelType= "Coupling" edge_weight= "120.0" isRemoved= "True" / >

 <edge source= "39" target= "15" directed= "true"

RelType= "Dependency" edge_weight= "3.0" isRemoved= "True" / >

 <edge source= "31" target= "38" directed= "true"

RelType= "Dependency" edge_weight= "29.0" isRemoved= "True" / >

 <edge source= "49" target= "23" directed= "true"

RelType= "Genaralization" edge_weight= "18.0" isRemoved= "True" / >

 </edges >

 </graph >

</graphml >

Figure 19: Forum Case Study GraphML File

WEIGHTS AVERAGE 404.2771

Weights Standard Deviation 889.2613

Table 4: Analytic of Relations

Highest Couple design models = 2640 between CForum & Exception, the second highly

coupled is when edge weight = 780 there were 2 edges has this weight and the most

frequent weight was 29 it replicated for 26 times.

6 Components remain as they were.

29 Components contains one design models

 55

2 Components were added

To refine the results user can manually manage the components; naming them and also

add or remove some of its constituents.

Figure 20: Window#2 – Components Manager

 56

6 Conclusion and Future Work

In today’s fast paced world, there is a huge demand for renovating object-oriented

systems into component-based systems. Renovation of object-oriented systems into

component-based systems decreases the complexity of the systems through lowering the

number of system constituent. This is achieved by grouping them into individual

components that provide a well defined system feature. Decreasing the complexity, in

turn, leads to improving the understandability of the system, reducing maintenance cost,

enhancing the ability to modify or facilitating the evolution of the system.

This paper demonstrated the generation of component-based system from an object-

oriented design using UML class diagrams. It was achieved by developing a system

recovery tool that converts an object-oriented structural design into component-based

software. This tool was tested on java programming and it was also ascertained that it can

be used for any programming language.

This system tool could be enhanced in the future by improving the weights for relations.

One way to do this could be by using neural networks to specify these weights rather than

deriving them empirically.

 57

References

[1] Baudry, B., L. Traon, Y., G. Sunye, “Testability Analysis of a UML Class

Diagram”, IEEE, 2002, Ottawa, Canada, pp. 54-65.

[2] Brandes U., C. Pich, “GraphML Transformation”, Springer, 2004, pp. 89-99.

[3] Burd E.L., M. Munro, “Enriching Program Comprehension for Software Reuse”,

Proceeding of Fifth Int’l Workshop Program Comprehension, pp.130-137, 1997.

[4] Cheng D., R. Kannan, S. Vempala, G. Wang, “A Divide-and-Merge Methodology

for Clustering”, PODS, 2005.

[5] Chiricota, Y.; F. Jourdan, and G. Melancon, “Software components capture using

graph clustering”, Proceedings of 11th IEEE International Workshop on Program

Comprehension, 10-11 May 2003, pp. 217- 226.

[6] Chitnis, M., P. Tiwari, L. Ananthamrthy, “The UML Class Diagram: Part1”,

2003.

[7] Dangon S., “A Cluster Algorithm for Graphs”, CWI, 2000.

[8] Deursen, A., B. Elsinga, P. Klint, and R. Tolido. “From Legacy to Component:

Software Renovation in Three Steps”, CAP Gemini. Institute, CWI, 2000.

[9] Ding C., X. He, “Cluster merging and splitting in hierarchical clustering

algorithms”, IEEE ICDM, 2002, pp. 139- 146.

[10] Ding C., X. He, H. Zha, M. Gu, H. Simon, “A Min-max Cut Algorithm for Graph

Partitioning and Data Clustering.” IEEE 1st Conference on Data Mining, 2001, pp.

107 –114.

[11] Errickson-Connor B., “Truth or consequences: legacy application modernization”,

Business Integration Journal, 2003.

[12] G. Marcela, M. Piattini, C. Calero, “Empirical Validation of Class Diagram

Metrics”, IEEE, 2002. pp. 195-203.

 58

[13] Genero, M., M. Piattini, C. Calero, “A Survey of Metrics for UML Class

Diagrams”, JOT, 2005.

[14] Hitz M., B. Montazeri, “Measuring Coupling and Cohesion in Object-Oriented

Systems”, Proc. Int'l Symp. Applied Corporate Computing, Monterrey, Mexico,

1995.

[15] Jain H., N. Chalimeda, N. Ivaturi, B. Reddy, “Business Component Identification

- A Formal Approach”, Proceedings of the 5th IEEE International Conference on

Enterprise Distributed Object Computing, p.183, September 04-07, 2001.

[16] Kang, D., B. Xu, J. Lu, W. Chu, “A Complexity Measure for Ontology Based on

UML”, IEEE, 2004, pp. 222-228.

[17] Koschke R., “Atomic Architectural Component Recovery for Program

Understanding and Evolution,” Proceedings of the International Conference on

Software Maintenance, October 2002.

[18] Lee E., B. Lee, W. Shin, C. Wu, “A Reengineering Process for Migrating from an

Object-oriented Legacy System to a Component-based System”, IEEE, 2003.

[19] Lee J., S. Jung, S. Kim, W. Hyun, D. Ham, “Component Identification Method

with Coupling and Cohesion”, IEEE, 2001.

[20] Li B., “Managing Dependencies in Component-Based Systems Based On Matrix

Model”, Proc. Of Net.Object.Days 2003, 22-25, Sept. 2003, Erfurt, Germany.

[21] Luo J., R. Jiang, L. Zhang, H. Mei, J. Sun, “An Experimental Study of Two

Graph Analysis Based Component Capture Methods for Object-Oriented

Systems”. IEEE, 2004, pp. 390-398.

[22] Manso M., M. Genero, M. Piattini, “No-redundant Metrics for UML Class

Diagram Structural Complexity”, CAiSE, 2003, pp. 127-142.

[23] Mehta A, and GT. Heineman, “Evolving legacy system features into fine-grained

components”, ACM, 2002, pp. 417-427.

[24] MOF 2.0/XMI Mapping Specification, v2.1, OMG, 2005.

 59

[25] Ncube, C., and N. Maiden."PORE: Procurement – Oriented Requirement

Engineering Method for the Component-Based Systems Engineering

Development Paradigm", International Workshop on Component-Based Software

Engineering, IEEE, 1999.

[26] Neville J., M. Alder, D. Jensen, “Clustering Relational Data Using Attribute and

Link Information”, n Proceedings of the Text Mining and Link Analysis

Workshop, 18th International Joint Conference on Artificial Intelligence, 2003.

[27] Ovlinger J., K. Lieberherr, “Class Graph Views”, Northeastern University, 1998.

[28] Sneed H., “Extracting Business Logic from existing COBOL programs as a basis

for Redevelopment”, IEEE, 2001.

[29] Tansalarak N., K.T. Claypool, “CGC: An Architecture to support Better and

Faster Component Evolution”, Second International Workshop on Unanticipated

Software Evolution, Warsaw, Poland, 2003.

[30] Tzerpos V., R. C. Holt, “Software Botryology Automatic Clustering of Software

Systems”

[31] Washizaki H., H. Yamamoto, Y. Fukazawa, “A Metrics Suite for Measuring

Reusability of Software Components”, Software Metrics Symposium, 2003.

Proceedings. Ninth International (2003), pp. 211-223.

[32] Yi T., F. Wu , C. Gan, “A comparison of metrics for UML class diagrams”, ACM

SIGSOFT Software Engineering Notes, v.29 n.5, 2004.

Books

[33] Cheesman J., and J. Daniels, “UML Components: A Simple Process for

Specifying Component-Based Software”, Addison-Wesley, 2001.

[34] Heineman G., W. Councill, “Component-Based Software Engineering: Putting the

Pieces Together”, Addison Wesley, 2001.

[35] Kay M., “XSLT 2.0 Programmer's Reference”, Wrox, 3rd edition, 2004.

 60

[36] Larman C., “Applying UML and Patterns: an Introduction to Object-Oriented

Analysis and Design and Iterative Development”, 3rd Ed., Prentice Hall, 2005.

[37] Sommerville J., “Software Engineering”, 6th Ed., Addison Wesley, 2001.

[38] Szyperski C., D. Gruntz, and S. Murer, “Component Software: Beyond Object-

Oriented Programming”, Addison Wesley Professional, 2nd edition, November

2002.

[39] Tennison J., “Beginning XSLT”, Wrox Press, Chicago, Illinois, May 2002.

Web Sites

[40] http://graphml.graphdrawing.org/

[41] http://jung.sourceforge.net/

[42] http://www.omg.org/technology/documents/formal/xmi.htm

[43] http://www.sdmetrics.com

[44] http://www.uml.org

[45] http://www.w3.org/TR/xslt

 61

http://graphml.graphdrawing.org/
http://jung.sourceforge.net/
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.sdmetrics.com/
http://www.uml.org/
http://w3.org/TR/xslt

	 ACKNOWLEDMENTS
	 TABLE OF CONTENTS
	ABSTRACT
	 Introduction
	Project Goal
	Project Objectives
	Methodology
	Overview

	1 Review of Relevant and Related Literature
	1.1 Legacy System Renovation
	Motivation: The Business Case for Renovation
	1.1.1 Renovate From Source Code
	1.1.2 Renovate From Design:
	1.2 Unified Modeling Language (UML)
	Why Use UML
	UML Diagrams
	Structural diagrams
	Class diagram
	Component diagram
	Xml Meta-model Interchange (XMI)

	1.3 Design Metrics
	Coupling
	Cohesion
	Complexity

	1.4 Reverse Engineering
	1.5 Clustering Technique
	Partitional Clustering
	Hierarchical Clustering
	Agglomerative Clustering (Bottom-Up)
	Divisive Clustering (Top-Down)

	1.6 Forward Engineering
	1.7 System Reengineering

	2 Tools
	SDMetrics
	Java Universal Network / Graph (JUNG)
	ArgoUML
	Stylus Studio
	Sourceforge

	3 Methodology
	 Project Phases
	3.1 Reverse Engineering
	3.2 Read and Analyze XMI file
	Weights Calculations
	3.3 Create Weighted Directed Graph
	3.4 Cluster the Graph
	3.5 Generate GraphML file
	3.6 Transfer GraphML to XMI file
	3.7 Forward Engineering

	4 System Design
	4.1 Class Diagram Level # 0:
	4.2 Input/Output Package
	4.2.1 Isolated IO Package:
	4.2.1.1 Open Class
	4.2.1.2 Save Class
	4.3 XMI2GraphML Package
	4.3.1 Isolated XMI2GraphML
	4.3.2 XMI2GraphML Dependencies
	4.3.3 XMI2GraphML
	4.3.3.1 Transform Class
	4.3.3.2 Read XMI Class
	4.3.3.3 Vertices Class
	4.3.3.4 Relation Class
	4.3.3.5 Coupling Class
	4.3.3.6 GraphML File Class
	4.3.3.7 GraphML File Handler Class

	4.4 CLUSTER Package
	4.4.1 Isolated CLUSTER
	4.4.2 CLUSTER Dependencies
	4.4.3 CLUSTER
	4.4.3.1 Edge Weight Cluster Class

	4.5 Graphical User Interface Package
	4.5.1 Isolated GUI
	4.5.2 GUI Package Dependency
	4.5.3 GUI Connections
	4.5.3.1 Cluster Class
	4.5.3.2 Manage Components Class
	4.5.3.3 Main Class

	 4.6 Overall Class Diagram

	5 Case Study
	6 Conclusion and Future Work
	 References

